

3
Contents

Contents

Contents

• Release Notes 4
• Entering and leaving Logo 28
• Tokenization 29
• Data Structure Primitives 33
• Communication 88
• Arithmetic 133
• Logical Operations 175
• Graphics 178
• Workspace Management 305
• Control Structures 354
• Conditional execution 364
• Loops 371
• Template Based Iteration 376
• Macros 387
• Error Processing 391
• Special Variables 394
• GUI programming 396
• Sound programming 561

4
Release Notes

Release Notes

If you're new to aUCBLogo and experience problems, please read all Release Notes, the bug list,
and try to read "Tokenization". 		

One of the most annoying things is incorrect documentation, so please tell me such things, best
including a fix. Also tell me bugs, which are not listed in the bugs directory. This will be very
helpful for the development, because stablity is of course an issue. 		

Release Notes

• Release Notes for Version 4.69 4
• Release Notes for Version 4.689 5
• Release Notes for Version 4.688 5
• Release Notes for Version 4.687 5
• Release Notes for Version 4.686 6
• Release Notes for Version 4.685 7
• Release Notes for Version 4.684 13
• Release Notes for Version 4.683 14
• Release Notes for Version 4.682 15
• Release Notes for Version 4.68 15
• Release Notes for Version 4.672 16
• Release Notes for Version 4.67 17
• Release Notes for Version 4.66 18
• Release Notes for Version 4.65 18
• Buglist for version 4.65 21
• Release Notes for Version 4.64 24
• Berkeley Logo User Manual 27

Release Notes for Version 4.69

I wrote a color to HSB function, reHSB and reHSBA, to enable sorting the color database by hue.
The color database can now be fetched with getColorDatabase. 		

I put most work into shadows this time: surfaces, polygons, tesselated polygons and
partialEllipsoid's now can produce shadows, if you call enableShadows before their use and the
primitive castShadows just before updateGraph. The shadow information stays persistent until you

5
Release Notes / Release Notes for Version 4.69

call clearShadows, so you can easily redraw the hole scene from a different view point with i.e.
rotatescene, because redraw automatically calls castShadows, if shadows are enabled. The color of
the shadows can be set with setShadowColor and queried with ShadowColor. 		

Release Notes for Version 4.689

For my new IFS3D.lg I needed setPixelXYZ and some fog primitives: 		

enableFog disableFog setFogDensity setFogRange setFogColor setFogMode 		

I wanted to be able to use the template based iteration tools with arrays, so I've added some array
capabilities to: 		

first butFirst last butLast firsts butFirsts fPut lPut combine 		

LogoVersion now outputs also details about the operating system version. 		

To get the screen size I wrote the primitive OSScreenSize. 		

I've added some layouting primitives for the node type Frame: 		

FrameMaximize FrameIconize FrameFullScreen 		

To set the Stacks into noisy mode (for debugging) you can now call the new primitive
setStackNoisy. By default the Stacks are not noisy now. Noisy means they print their size when
they grow or shrink. 		

Release Notes for Version 4.688

Inspired by Ken Kahn's extrapolate11.lg I wrote an IFS morphing program ifsmorph.lg. For it I
needed a fast shuffle primitive and combine for usage with array types, so I wrote them. 		

6
Release Notes / Release Notes for Version 4.687

Release Notes for Version 4.687

The nodes persistence now works again in this version. Only simstring3.lg has been changed a bit
in addtion to that, so these Release Notes stay very short. 		

Release Notes for Version 4.686

This is mainly a bugfix release. The nodes persistence is broken in this version, because I
introduced dynamic stacks, which can grow and shrink on demand, and those are not yet fully
debugged. I've written a mandelbrot set zoom program, mandel5.lg. The new ifs2.lg is now much
faster, as are the mandel programs, because of new array operations. A simple simulation of a
flapping flag that I wrote is flappingflag.lg. I wrote an epiano simulation with computed wave files,
using echos and lowPassFilters. Also a nice new demo is a string simulation simstring3.lg, which
can create a .wav file output. And I played a bit with new PC speaker and Midi sound primitives,
since they are easier to use than computing every sound for playwave in Logo (which involves
complex simulations, for i.e. drums). I wrote a car racing simulation game, carrace.lg (but without
cars). I've also ported a few games to aUCBLogo: snake.lg, snakes.lg and pacman.lg by David
Costanzo, and juniper9.lg (Juniper Green) by David Peacock. 		

I've also included a few new array/list operations. Most important of them is "item" with a list
index, which can be used as a lookup table (see ifs2.lg!). 		

Some new syntactic sugar are the new setitem operators: a.X=b and a.X.Y=b, where a must be
something having elements, and X and Y can be expressions (without whitespace, still to do), for
example a.(i-2).(j+k)=b. 		

A few new or changed primitives are also included: 		

MidiCountDevices MidiDeviceInfo MidiOpen MidiClose MidiMessage MidiProgramChange
MidiNoteOn MidiNoteOff MidiAllSoundsOff MidiOutStream MidiOutStreamsStart
MidiOutStreamsStop MidiOutStreamsFinished 		

Tone Tones TonesStop TonesFinished 		

Sound Sounds SoundsStop SoundsFinished 		

LabelFont LabelSize LabelWeight LabelAlign 		

7
Release Notes / Release Notes for Version 4.686

setPixel setPixelXY 		

addColorsMod 		

MandelIterate 		

BackslashEncode 		

ConsoleSetFocus 		

lowPassFilter saturateAbove saturateBelow 		

deepCopy 		

Item mdSetItem 		

shrinkStacks 		

You can always ask me if you experience problems with aUCBLogo! 		

 Andreas Micheler 		

Release Notes for Version 4.685

In trying to built more persistence into aUCBLogo, the console window text can now be
automatically saved in the file USER-aucblogo-console, where USER is replaced by the name of
the computer user currently logged in. There's a check item in the menu with which you can disable
autoload and -save of the console text. The same autosave mechanism is now provided for the
picture data, and loadPicture and savePicture now work (I hope) correctly. Additionally I made the
new primitives loadPictureText and savePictureText to enable easy exporting and importing of
picture data and better debugging. 		

Finally I achieved persistence of all Logo nodes, so you can run any aUCBLogo program, close
aUCBLogo, do something else, start aUCBLogo again and recover your last state. The last state can
be running or in midst of a debugging session. This persistent mode can of course be disabled by
unchecking "Autosave Nodes" in the File menu, which can be highly wanted if there are many users
logged in with the same username. 		

8
Release Notes / Release Notes for Version 4.685

Printing does now work. 		

Support for arbitrary precision math using the MAPM library has been added: 		

BigFloat	BigFloatSetPrecision 		

The primitives Time and FileTime now have the same output format and the MilliSeconds are an
additional member. 		

The predicate FileP / File? is now a primitve. 		

The new primitive Files outputs the files of the current working directory. 		

The following primitives are for working with directories: 		

DirectoryP getWorkingDirectory makeDirectory 		

The constructors Array, IntArray, Int16Array and FloatArray have been expanded to include a copy
constructor, so such data can easily be duplicated. 		

The primitives saveScreenBMP and saveBMP have been deleted, because there is now saveScreen,
which can save the screen in all formats supported by wxWidgets. 		

Additionally there's now saveScreenVector which uses the GL2PS library to generate various
vector graphic formats. 		

BitMaxX and BitMaxY are new primitves to get the maximal allowed coordinates of a Bitmap
obtained by BitCopy or a file. 		

The shininess of a 3D filled shape can be set now with setMaterialShininess. 		

To the Sphere primitive has been expanded to optionally take slices and stacks parameters, which
gives more control about the drawing finesse. 		

The primitives readCharExt and rCE have been changed to not output a word with length 1 (a char)
but to output an Int, because in the section about KeyboardValue the wxWidgets Keycode constants
have been added, which all have numbers >= 300, and that's to big to fit in a char. 		

It is now possible to break or continue loops by using the break or continueLoop statements. 		

The nice primitive playWaveFast has been added for use in games and music programs. It can play

9
Release Notes / Release Notes for Version 4.685

multiple wave files simultanously. 		

You now can create a Video for Windows (.avi) file using the new primitives
VideoStart..VideoFrame..VideoEnd. 		

The Color Database has been extended by lots of extra color names, but all still just in English. 		

Among other new GUI programming primitives, custom keyboard and mouse event handlers
written in Logo are now supported. For the console are the following keyboard and mouse handlers:
		

OnChar	OnKeyDown	OnKeyUp	KeyboardValue
OnTextMouseLeftDown	OnTextMouseRightDown OnTextMouseMiddleDown
OnTextMouseLeftUp	OnTextMouseRightUp OnTextMouseMiddleUp
OnTextMouseLeftDClick	OnTextMouseRightDClick OnTextMouseMiddleDClick
OnTextMouseMotion 		

For the main graph window are those mouse handlers: 		

OnMouseLeftDown	OnMouseRightDown OnMouseMiddleDown
OnMouseLeftUp	OnMouseRightUp OnMouseMiddleUp
OnMouseLeftDClick	OnMouseRightDClick OnMouseMiddleDClick OnMouseMotion 		

You can now set the mouse cursor to "busy" or normal and ask if mouse is busy with the following
commands: 		

beginBusyCursor	endBusyCursor	BusyCursor?

The following standard dialogs for getting information from the user are now available: 		

DirSelector	FileSelector getColorFromUser	getFontFromUser	getMultipleChoices
getNumberFromUser	getPasswordFromUser	getTextFromUser
getSingleChoice	getSingleChoiceIndex MessageBox 		

For cleanup of texture memory there's now deleteTextures, so a texture memory overflow can be
prevented, if you create many textures which you maybe only use once. 		

When you use Graph windows with a defined shape then setScreenRange might be useful to get
away from the default [800,600] logical pixels. 		

setPixel can now also take 3D coordiantes as arguments. 		

10
Release Notes / Release Notes for Version 4.685

For easier and faster plotting the new command setPixelXY has been written: It takes structured X
data and equally structured Y data as separate arguments. 		

The DLCall primitive supports now argument-by-pointer when "IntPtr, "Int16Ptr, "Int8Ptr,
"UInt8Ptr or "FloatPtr are specified as argument type. 		

For customizing the Logo environment, file and dir locations, the most important can now be read
and changed: 		

LogoComspec	setLogoComspec LogoEditor	setLogoEditor LogoHelpDir	setLogoHelpDir
LogoLibDir	setLogoLibDir LogoTempDir	setLogoTempDir 		

Windows (using the constructor Frame), multiple Graph windows (using the constructor Graph) and
many Controls from the wxWidgets framework are now included. 		

New primitives for usage with Frame: 		

FrameDestroy FrameOnChar	FrameOnKeyDown	FrameOnKeyUp FrameSetFocus	FrameEnable
FrameSetClientSize FrameSetColor	FrameSetBackgroundColor
FrameSetFontSize	FrameSetFontName FrameSetFontStyle	FrameSetFontWeight
FrameSetShape	FrameSetSizer 		

New primitives for usage with Graph: 		

GraphDestroy GraphCurrent	GraphSetCurrent GraphOnChar	GraphOnKeyDown	GraphOnKeyUp
GraphOnMouseLeftDown	GraphOnMouseRightDown	GraphOnMouseMiddleDown
GraphOnMouseLeftUp	GraphOnMouseRightUp	GraphOnMouseMiddleUp
GraphOnMouseLeftDClick	GraphOnMouseRightDClick	GraphOnMouseMiddleDClick
GraphOnMouseMotion 		

The main window layout mechanism of wxWidgets is supported with the constructor BoxSizer and
the applicable primitives: 		

BoxSizerAdd	BoxSizerDestroy 		

Be aware of the command FrameSetSizer: it enables a sizer on a Frame. 		

The new controls are (here follow the constructors alphabetically, the detailed listing of primitives
afterwards): 		

Button	CheckBox	ChoiceBox	ComboBox	FloatControl

11
Release Notes / Release Notes for Version 4.685

Gauge	IntControl	ListBox	ListControl	RadioButton Slider	StaticText	TextControl	ToggleButton 		

New primitives for usage with Button: 		

ButtonDestroy	ButtonOnClick	ButtonEnable 		

New primitives for usage with CheckBox: 		

CheckBoxDestroy	CheckBoxOnClick CheckBoxValue	CheckBoxSet	CheckBoxEnable 		

New primitives for usage with ChoiceBox: 		

ChoiceBoxDestroy ChoiceBoxSelection	ChoiceBoxSetSelection ChoiceBoxSetChoices
ChoiceBoxAppend ChoiceBoxSetItem	ChoiceBoxRemoveItem ChoiceBoxCount
ChoiceBoxSetBackgroundColor	ChoiceBoxSetColor
ChoiceBoxSetFontSize	ChoiceBoxSetFontName
ChoiceBoxSetFontStyle	ChoiceBoxSetFontWeight
ChoiceBoxOnChar	ChoiceBoxOnKeyDown	ChoiceBoxOnKeyUp ChoiceBoxOnSelect
ChoiceBoxEnable 		

New primitives for usage with ComboBox: 		

ComboBoxDestroy ComboBoxSelection	ComboBoxSetSelection ComboBoxSetChoices
ComboBoxAppend ComboBoxSetItem	ComboBoxRemoveItem ComboBoxCount
ComboBoxValue	ComboBoxSetValue ComboBoxSetBackgroundColor	ComboBoxSetColor
ComboBoxSetFontSize	ComboBoxSetFontName
ComboBoxSetFontStyle	ComboBoxSetFontWeight
ComboBoxOnChar	ComboBoxOnKeyDown	ComboBoxOnKeyUp
ComboBoxOnSelect	ComboBoxOnChange	ComboBoxOnEnter ComboBoxEnable 		

New primitives for usage with FloatControl: 		

FloatControlDestroy FloatControlValue	FloatControlSetValue
FloatControlSetRange	FloatControlOnChange FloatControlEnable 		

New primitives for usage with Gauge: 		

GaugeDestroy GaugeValue	GaugeSetValue	GaugeSetRange
GaugeSetColor	GaugeSetBackgroundColor 		

New primitives for usage with IntControl: 		

12
Release Notes / Release Notes for Version 4.685

IntControlDestroy IntControlValue	IntControlSetValue IntControlSetRange	IntControlOnChange
IntControlEnable 		

New primitives for usage with ListBox: 		

ListBoxDestroy ListBoxSelections	ListBoxSetSelections ListBoxSetChoices ListBoxAppend
ListBoxSetItem	ListBoxRemoveItem ListBoxCount ListBoxSetBackgroundColor	ListBoxSetColor
ListBoxSetFontSize	ListBoxSetFontName ListBoxSetFontStyle	ListBoxSetFontWeight
ListBoxOnChar	ListBoxOnKeyDown	ListBoxOnKeyUp ListBoxOnSelect	ListBoxOnDClick
ListBoxEnable 		

New primitives for usage with ListControl: 		

ListControlDestroy ListControlInsertColumn ListControlInsertItem
ListControlSetItem	ListControlGetItem	ListControlDeleteItem
ListControlSetRow	ListControlSetColumn	ListControlSet
ListControlGetRow	ListControlGetColumn	ListControlGet
ListControlItemCount	ListControlColumnCount
ListControlColumn	ListControlRow	ListControlText ListControlSort
ListControlSetBackgroundColor	ListControlSetColor
ListControlSetFontSize	ListControlSetFontName
ListControlSetFontStyle	ListControlSetFontWeight
ListControlOnChar	ListControlOnKeyDown	ListControlOnKeyUp
ListControlOnItemSelected	ListControlOnItemActivated ListControlOnColClick
ListControlEnable 		

New primitives for usage with RadioButton: 		

RadioButtonDestroy	RadioButtonOnClick RadioButtonValue	RadioButtonSet RadioButtonEnable
		

New primitives for usage with Slider: 		

SliderDestroy SliderValue	SliderSetValue	SliderSetRange	SliderOnScroll SliderEnable 		

New primitives for usage with StaticText: 		

StaticTextDestroy StaticTextLabel	StaticTextSetLabel
StaticTextSetBackgroundColor	StaticTextSetColor StaticTextSetFontSize	StaticTextSetFontName
StaticTextSetFontStyle	StaticTextSetFontWeight 		

13
Release Notes / Release Notes for Version 4.685

New primitives for usage with TextControl: 		

TextControlDestroy TextControlValue	TextControlSetValue TextControlWrite	TextControlAppend
TextControlSetInsertionPointEnd TextControlCursor	TextControlSetCursor
TextControlInsertMode	TextControlOverwriteMode
TextControlSetBackgroundColor	TextControlSetColor
TextControlSetFontSize	TextControlSetFontName
TextControlSetFontStyle	TextControlSetFontWeight
TextControlOnChar	TextControlOnKeyDown	TextControlOnKeyUp
TextControlOnChange	TextControlOnEnter TextControlEnable 		

New primitives for usage with ToggleButton: 		

ToggleButtonDestroy	ToggleButtonOnClick ToggleButtonSetValue	ToggleButtonValue
ToggleButtonEnable 		

And for the debugging of the Garbage Collector (and for my amusement) I wrote a memory
window, accessable through the view menu, where one can inspect every Node by pointing with the
mouse to it: a tooltip window with a textual representation of that Node will show up then. It's
pretty interesting to see the GC working! 		

You can always ask me if you experience problems with aUCBLogo! 		

 Andreas Micheler 		

Release Notes for Version 4.684

This Release is mainly because I've updated the Linux version of aUCBLogo. 		

I also changed the "Pause" and "Stop" hot keys from [trl-Q] and [Ctrl-P] to [Pause] and
[Ctrl-Pause]. 		

Additional hot keys are now [F2]="repeat last command" and [Ctrl-F2]="reset" (calls "reset.lg", so
it's user-definable). 		

For the beginners there's now a popup menu on a right mouse click, with which one can insert
primitives, choosen by category like in the help. 		

14
Release Notes / Release Notes for Version 4.684

I added the new type FloatArray to enable faster array computing, which is sometimes highly
wanted, because it's about five times as fast as with conventional Arrays. To support the new type I
also wrote rSeqFloatArray, abbreviated rSeqFA, which does nearly the same as rSeq, but with a
FloatArray output. 		

Inspired by Michael Malien I wrote a little Profiler (profile.lg, with demos testprofile.lg,
testprofile2.lg and testprofile3.lg). To ask if a given character is in some subset of characters, I
added the new predicates AlNum?, Alpha?, ASCII?, Cntrl?, CSym?, Digit?, Graph?, Lower?,
Print?, Punct?, Space?, Upper?, and xDigit?. They map directly to the C functions with similar
names (isalpha etc.). 		

I improved bounce3.lg a bit. Now the ball is textured and rotates, depending on in which direction it
flies. For this the new primitives spinX, spinY and spinZ have been written, and to enable the
overwriting of drawn graphics I added setDepthFunc, supporting the choosing of the OpenGL
depthFunc. 		

I also played with explosion.lg and added the demo 3drohre.lg, which is modeled after the screen
saver "3D Pipes". 		

To demonstrate the speed of the new FloatArray type I developed makewav5.lg and makewav6.lg.
In makewav6.lg is a realtime oscilloscope shown during the playing of the computed wave. 		

Mike Sandy inspired me to include NameInTable? . 		

And I've fixed a few very bad Array bugs in the unary and binary math functions. 		

Release Notes for Version 4.683

BitLoad & BitSave have been removed, because there are now loadImage and saveImage, which
know all file formats which wxWidgets knows. 		

The texturing has been improved (see throwcoin.lg, house2.lg and landscape4.lg!). 		

New and changed primitives are: 		

FileTime 		

BitSetPixel	BitPixel 		

15
Release Notes / Release Notes for Version 4.683

Texture 		

loadImage	saveImage 		

setTexXY	setTexPos 		

setTessWindingRule 		

Release Notes for Version 4.682

The IDE has been improved a lot. 		

F9 always runs the program from source code line, where the program is at that time. 		

F7 always sets the program into single stepping mode and executes one step. Buried procedures are
stepped over. 		

Control-F8 sets a breakpoint in the source code line at the cursor's position. 		

The Vars and Calls windows now are much faster and don't flicker anymore. 		

Internally now my PtrDebug smart pointer checking templates work again, and memory leak
checking is available in the debug built of aucblogo.exe. This is important to improve the stability, I
found several related bugs. 		

And I found most of the bugs in bounce3.lg and am2.lg too. 		

Changed primitives are:	edit	editFile 		

A new primitive is updateVarsOnStep 		

Release Notes for Version 4.68

There's now an integrated debugging environment (IDE) included, where you can singlestep in the
source code. The edit.exe is now obsolete and is not included any more because there is the internal

16
Release Notes / Release Notes for Version 4.68

editor. Also errors jump directly to the source code line, where something was wrong. A simple
example of the debugging capabilities shows testedit.lg. The lib files now all have a filename
ending ".lg". 		

No new primitives and therefore no new help. For online html help use the 4.672 help version. 		

I can make a Linux version of the new 4.68 Release if anyone's interested, just send me an email
(the adress is at the bottom of my web page). 		

The mastermind game by Brian Harvey now also runs fine with the new
delayed-list-evaluation-streams. 		

Release Notes for Version 4.672

This is mainly a bugfix release. 		

There was a bug in "for", one in the splitter window class, one in setItem, in Sphere and several
other minor bugs. 		

New in this release are the primitives: 		

DynamicLibrary	DynamicLibraryCall	DLCall 		

BitItem	Items	setItems 		

StringBuffer	StringBufferToWord 		

setMaterialAmbient	setMaterialDiffuse setMaterialSpecular	setMaterialEmission 		

setVarsSplitter	setCallsSplitter 		

TextMousePos	TextMouseX	TextMouseY 		

WordUnderCursor	setTextSelection 		

enableTextMouseEvents	disableTextMouseEvents 		

And the primitive splitScreen and its abbreviation ss have been rewritten to optionally accept a

17
Release Notes / Release Notes for Version 4.672

splitting ratio. The window splitter class has been rewritten in parts, now the splitters should work
correctly. 		

The window position and size including the splitter ratios are now saved into the registry on closing
aUCBLogo. 		

PolyStart and TessStart have now been changed to not include the current pos into the polygon.
PolyStart is now like in MSWLogo. 		

edit.exe is updated, too. 		

And I have been working through all the logo demos, they should work now all fine. 		

Release Notes for Version 4.67

The "edit" executable is new. It can replace Crimson Editor in most issues, and is for Logo
programs even a bit nicer. It's based on wxStyledTextControl, better on the StcTest example of
wxWidgets-2.6.1, but somewhat extended. I have written a Lexer module especially for aUCBLogo
which highlights the syntax almost completely correct. The syntax highlighting can easily be
deactivated by choosing View/Hilight language/<default>. The "Run" command bound to F9 can be
changed, also the location of the help file bound to F1, so that aUCBLogo can be in any path
location. F4 jumps to the procedure named like the word under the cursor, which is nice for symbol
browsing. There are also some extras in the Extra menu: converting case of symbols to correct
aUCBLogo case, and convert "make" to "=". 		

I've created some new Logo types for usage with binary data: 		

Int16	Int8	UInt8	IntArray	Int16Array	Struct 		

New and changed primitives are: 		

Int8	Int16	UInt8 IntArray	Int16Array Struct 		

SizeOf	TypeOf 		

toList 		

setWriter	setReader 		

18
Release Notes / Release Notes for Version 4.67

readIntBin	readInt16Bin	readInt8Bin	readUInt8Bin readFloatBin	readComplexBin
readIntArrayBin	readInt16ArrayBin readStructBin 		

FileSize 		

LogoVersion 		

boldTextMode	plainTextMode setTextSize CharUnderCursor 		

mandelIterate 		

GraphicStart	GraphicEnd	drawGraphic 		

allFullScreen	notFullScreen 		

enableLighting	disableLighting enableDither	disableDither enablePointSmooth	disablePointSmooth
		

playWave 		

PortOut	PortIn	setPortBit	clearPortBit getPortBit	notPortBit	leftPortShift	rightPortShift 		

waituS 		

setPC	setFC	setSC 		

New and changed library procedures are: 		

arc2 		

transposematrix 		

vowelp 		

Release Notes for Version 4.66

There's not much new to say. I only have ported aUCBLogo to wxWidgets and made a Linux
version. Because this was yet a bit of work, therefore I released the new version. 		

19
Release Notes / Release Notes for Version 4.65

Release Notes for Version 4.65

aUCBLogo-4.65 is a port of my UCBlogo version to the OpenGL graphics library. The core has
only slightly been changed since the last version (4.64): Two new Warnings have been added, so
you can easier port programs from UCBLogo and MSWLogo. They're displayed when a variable
has the same name as a proc or a primitive. 		

Supported platform is still only Windows 9x and newer, where OpenGL exists. Porting aUCBLogo
to wxWindows and Linux is on my project list. 		

New are antialised lines, polygon rendering and texture mapping (with bugs, but nice though). 		

I have added a reset.lg to reset the interpreter to a known state. 		

Also new is the (now working) dir (because shell does work better) and dirlg.lg. dirlg is particularly
useful for browsing the examples in combination with reset. 		

I have tried to make all old demos work with the new graphics engine, but the projection matrix
functions are still not working (spelltest.lg). 		

On some graphics cards (i.e. Intel Extreme Graphics) there's strange OpenGL SwapBuffers()
behavior, therefore I have added the command	singleBuffer (and to reset: doubleBuffer). 		

Also, to use the free Crimson Editor, I changed the startup behavior. Now if you call Logo.exe with
a xxx.lg file name parameter (logo.exe xxx.lg), then the file will be loaded and the procedure xxx
will be executed. 		

This is cool because so you can write your Logo programs in an editor like Crimson and then
execute your program with just one hot key (if you assigning one, which I intensly recommend).
The Crimson syntax file in the Crimson subdirectory is of course updated, too. You should copy the
/Crimson/ directory to your Crimson Programs directory to enable syntax highlighting. 		

A MS HTMLHelp file (aUCBLogo.chm) is new in this package. So you can call in Logo the help
with F1, and even better, include the .chm in Crimson, so you have the F1 help there, too (using
Crimson's Tools/Conf. User Tools menu to configure). 		

The comparsion operators now should work, even with strings. If one of the arguments is a number,
then the other argument will be converted to a number if possible. If not possible, then a string
compare is done. 		

On converting from MSWLogo or UCBLogo you should replace all dots . to _ because the dot . is

20
Release Notes / Release Notes for Version 4.65

the item operator in aUCBLogo. Also, = should be changed to ==, because = is the assignment
operator, == is the comparsion operator. But the biggest hurdle are variables which have the same
name as a procedure or a primitive. In such a case I mostly rename i.e. a variable "list" to "list_". 		

Also, I've ported some of the cool CSLS demos to work with aUCBLogo (basic, pascal, diff). 		

Changed and new primitives are: 		

< <= == > >= 		

ArcSin	ArcCos	radArcSin	radArcCos 		

ignore	replace 		

cd changeDir 		

doubleBuffer 	singleBuffer 	redraw 	saveSize 	setSaveSize 		

BitCopy	BitPaste	BitLoad	BitMakeTransparent	bitTrans	BitSave 		

enableLineSmooth 	enLS 	disableLineSmooth	disLS enablePolySmooth 	enPS
	disablePolySmooth	disPS enableRoundLineEnds enRLE 	disableRoundLineEnds disRLE 		

perspective 	unperspective 	setEye 	setPS 		

Ellipse 	fillEllipse 	fillPie 	fillRect 		

reRGBA 	RGBA 	HSBA	addColors 		

setXYZ 	setZ 	PosXYZ 	setPosXYZ 		

DistanceXYZ 	towardsXYZ 		

setSpherePos 	setCylinderPos 		

Roll 	leftRoll 	rightRoll 		

Orientation 	setOrientation 		

PolyEnd 	PolyStart 		

21
Release Notes / Release Notes for Version 4.65

Sphere 	Ellipsoid 		

setLightPos setLightAmbient 	setLightDiffuse 		setLightSpecular 		

Texture 	enableTexture 	enTex	disableTexture 	disTex 		

new library procedures are: 		

dir	dirlg	reset	check 		

axes 	rotatescene 		

displaymatrix 		

BitPasteT has been deleted because now there is BitMakeTransparent, and OpenGL provides Alpha
channel support (transparence). 		

PrintSize, SetPrintSize are deleted, because printing chooses the sizes automatically. And saving is
controlled via setSaveSize, saveSize. 		

movePixel and moveLine are deleted, because there is double buffering. 		

For questions concerning this special version of good old UCBLogo you may ask Andreas Micheler. 		

Buglist for version 4.65

I don't love to tell you those bugs, but I think it's better than leaving you hanging. 		

1) ;~+ Comment bug:
 ;~comment
 ; I don't know how to ~comment

but even worse:
 ;~+
 No way! This is bogus!; I don't know how to ~
 continue ; Pausing...

22
Release Notes / Buglist for version 4.65

2) Procedure redefinition bug (wrong error message):
 circle2
 ; []
 doesn't like Unbound as input

circle2.lg is:
 to circle r
 arc 360 r
 end

3) Arcbug (arcbug.lg): on resizeing the screen some rabbish is drawn.
 to arcbug
 cs
 fd 400
 lt 180
 arc 15 100
 end

4) "=" bug (wrong error message):
 show a=1
 ; = didn't output to []

5) another "=" bug:
 i1=0
 show i1
 Unbound

Workaround is adding a space after a symbol with numeric end:
 j1 =0
 show j1
 0

6) "+=" bug: the number input is not copied but changed.
 a=0
 b=a
 a+=1
 b
 1 ;-)

Workaround: use a=int for initialising when using "+="! 		

23
Release Notes / Buglist for version 4.65

7) empty line "end" bug:
 end

 end
 t defined
 t
 1234
 ; I don't know how to end in t
 pr 1234 end

Workaround: don't use empty lines before "end". 		

9) setItem operator "a.b=c" bug:
 a=[]
 a.1=0

crashes the interpreter very badly. 		

10) ".="-bug:
 a.=1
 a ;-)

prints a bad error message. 		

11) "Shell"-bug: the output is cluttered with empty lines. 		

12) "a -1 -bug:
 "a -1
 a ;-)

should output like this:
 "a - 1
 [a - 1]
 ;-)

13) "a=1e-6"-bug:
 a=1e-6
 ; I don't know how to 1e-6

Workaround is adding a space:
 a= 1e-6

24
Release Notes / Buglist for version 4.65

 a
 1e-006 ;-)

14) "=="-bug:
 (1+1)==2
 ; too much inside ()'s

Workaround is adding a space:
 (1+1) == 2
 true ;-)

15) "1-.5"-bug:
 1-.5
 ; not enough inputs to .

^Workaround is adding a space:
 1- .5
 0.5 ;-)

16) case ignored bug:
 pr "M ;should print "M , not "m!

Release Notes for Version 4.64

This is a major rewrite of the core of UCBLogo including the garbage collector, now with typesafe
C++ classes, many new enums, templates for GC debugging and with a speed gain of about 20-40
times :-))) Top speed is better than 310 CPU clock cycles per logo instruction, which is not too bad
for an interpreter. This was possible by the introduction of stacks and so the avoidance of new
constructors during the runtime, which charged the GC too much. 		

The command line is now a RichEdit control with all its advantages. CTRL-ENTER inserts a new
line, ENTER executes the line. There is no prompt any more (except some errors when pausing),
because every line should be executable. The error "You don`t say what to do with" now is removed
in favour of the result with the comment ;-) so you can make fast computations by hand if you need
them. Line continuations ~ are not needed any more. 		

e calls the editor (write the following settings to your autoexec.bat or into your system environment
on Windows XP:

25
Release Notes / Release Notes for Version 4.64

set AEDITOR=C:\Windows\Notepad
set ALOGOLIB=C:\aUCBLogo\Lib
set ALOGOHELP=C:\aUCBLogo\Help).

h [command] opens a web browser with the help page for that command. You will have to change
the directories in h.lg for correct operation. 		

A bit of new syntax has been introduced to make unquoted variable assignments and colonless
variables possible, like 		

a_variable=some_other_var
b=[1 2 3]
c=3.14
d+=pi

Equality can be checked with ==, as in 		

show true==false
false

A variable now has higher priority than a procedure of the same name. 		

Also some new primitives are included: 		

repeatCount, ShellSpawn, traced, setCaseIgnored, CaseIgnoredP, 		

Matrix, setMatrix, TurtleMatrix, TM, setTurtleMatrix, setTM, IdentityMatrix, IDM,
setIdentityMatrix, setIDM, Pixel, setPixel, Line, movePixel, moveLine, fillRect, fill, fillEllipse,
setFC,setFloodColor, FloodColor, RGB, reRGB, HSB, addColors, savePicture, savePic,
loadPicture, loadPic, savePostScript, savePS, 		

CharP, intP, floatP, complexP, readCharExt,rCE, rotate, ArrayToList, ListToArray, merge,
mergePairs, toListList, mergeSort, _setButFirst, PropertyList, getProperty, putProperty,
removeProperty, 		

Faculty, primeP, factorize, =, lessEqualP,greaterEqualP, <=,>=, min, max, Norm, maxNorm, resize,
rnd, cross, invertMatrix, trunc, Tan, mod, ^, radTan, abs, xCopy, xAdd, xSub, xMul, xDiv, xMod,
+=, -=, *=, /=, 		

Arity, Primitives, PropertyLists, printOut, printOutTitles, eraseAll, eraseProcedures, eraseNames,

26
Release Notes / Release Notes for Version 4.64

erasePropertyLists, 		

timeFine, timeMilli, TimeU, TimeURes, TimerFreq, time, MIPS, Tone, playWave, waitMS, 		

setTextFont, insertMode, overwriteMode,	setPrintPrecision 		

LabelSize, setLabelSize, setLabelFont, setLabelWeight, setLabelAlign. 		

PrintSize, SetPrintSize, saveScreenBMP, saveBMP, setUpdateGraph, updateGraph, updateVars,
Calls, updateCalls, refreshP, dispatchMessages, BitCopy, BitPaste, BitPasteT, scroll,
scrollCalibrate, scrollCal 		

Multiple turtles: Turtle, newTurtle, setTurtle 		

3D: perspective, unperspective, setEye, leftRoll,lR, rightRoll,rr, upPitch,uP, downPitch,down, setZ,
setXYZ, setPosXYZ, _setPosXYZ, setSpherePos, setCylinderPos, xCor, yCor, zCor, PosXYZ,
setRoll, setPitch, setOrientation, Roll, Pitch, Orientation, towards, towardsXYZ, Distance,
DistanceXYZ. 		

And some functions have been extended, especially the math functions, which can now take nested
lists and arrays and complex numbers like 		

{[1 2] 3.14 {4 5 [6 7]}}+{[1 2] 3.14 {4 5 [6 7]}}
{[2 4] 6.28 {8 10 [12 14]}
} ;-)

(1+2i)*(2+4i)
-6+8i ;-)

1+2e3i
1+2000i ;-)

exp pi*2i
-1+1.22460635382238e-016i ;-)

unary functions: BitNot, random, Int, round, truncate, Sin, Cos, Tan, radSin, radCos, radTan, Sqr,
Sqrt, exp, LN, Log10, real, imag, conjugate 		

binary functions: +, -, *, /, Remainder, aShift, lShift, BitOr, BitAnd, BitXOr, Power, ArcTan,
radArcTan 		

27
Release Notes / Release Notes for Version 4.64

Shell acts now more like in unix, it gives back the output in form of a list, but it has still some bugs.
		

A syntax highlighting scheme for the free Proton Editor is included (aUCBLogo.sch), another editor
scheme is for the Crimson editor (crimson.zip). 		

For questions concerning this special version of good old UCBLogo you may ask Andreas Micheler. 		

Berkeley Logo User Manual

Copyright (C) 1993 by the Regents of the University of
California		

This program is free software; you can redistribute it and/or
modify
it under the terms of the GNU General Public License as published
by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS for A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

This is a program that is still being written. Many things are missing, including adequate
documentation. This manual assumes that you already know how to program in Logo, and merely
presents the details of this new implementation. Read
 Computer Science Logo Style, Volume 1:
 Symbolic Computing by
 <a href="http://www.cs.berkeley.edu/~bh/"

28
Release Notes / Berkeley Logo User Manual

target="_parent">Brian Harvey (MIT Press, 1997)

for a tutorial on Logo programming with emphasis on symbolic computation. Or you can look at the
Logo Forum
 comp.lang.logo
for interesting information and intensive discussions. 		

Here are the special features of this dialect of Logo: 		

Source file compatible among Unix, DOS, and Mac platforms.		

Random-access ARRAYs.		

Variable number of inputs to user-defined procedures.		

MUTATORS for LIST structure (dangerous).		

PAUSE on ERROR, and other improvements to ERROR PROCESSING.		

Comments and continuation lines; formatting is preserved when
PROCEDURE DEFINITION(s) are saved or edited.

Terrapin-style TOKENIZATION (e.g., [2+3] is a LIST with one
member)
but LCSI-style syntax (no special forms except TO). The best of
both worlds.

First-class instruction and expression templates (see APPLY).		

MACROS.		
Features *not* found in Berkeley Logo include robotics, music, GUIs, animation, parallelism, and
multimedia. For those, buy a commercial version. 		

Entering and leaving Logo

The process to start Logo depends on your operating system: 		

29
Entering and leaving Logo

Unix: Type the word aucblogo to the shell.
(The directory in which you've installed Logo must be in your
path.)

Windows: Double-click on aucblogo.exe in the aucblogo folder.		

To leave Logo, enter the command "bye".		
Under Unix or DOS, if you include one or more filenames on the command line when starting
Logo, those files will be loaded before the interpreter starts reading commands from your terminal.
If you load a file that executes some program that includes a "bye" command, Logo will run that
program and exit. You can therefore write standalone programs in Logo and run them with
shell/batch scripts. To support this technique, Logo does not print its usual welcoming and parting
messages if you give file arguments to the logo command. 		

If you type your interrupt character (see table below) Logo will stop what it's doing and return to
toplevel, as if you did THROW "TOPLEVEL. If you type your quit character Logo will pause as if
you did PAUSE. 		

toplevel [Ctrl-Pause]		

pause [Pause]		
If you have an environment variable called ALOGOLIB whose value is the name of a directory,
then Logo will use that directory instead of the default library. If you invoke a procedure that has
not been defined, Logo first looks for a file in the current directory named proc.lg where "proc" is
the procedure name in lower case letters. If such a file exists, Logo loads that file. If the missing
procedure is still undefined, or if there is no such file, Logo then looks in the library directory for a
file named proc.lg and, if it exists, loads it. If neither file contains a definition for the procedure,
then Logo signals an error. Several procedures that are primitive in most versions of Logo are
included in the default library, so if you use a different library you may want to include some or all
of the default library in it. 		

Tokenization

Names of procedures, variables, and property lists are case-insensitive. So are the special words
END, TRUE, and FALSE. Case of letters is preserved in everything you type, however. 		

Within square brackets, words are delimited only by spaces and square brackets.

30
Tokenization

 [2+3]
is a list containing one word. Note, however, that the Logo primitives that interpret such a list as a
Logo instruction or expression (RUN, IF, etc.) reparse the list as if it had not been typed inside
brackets. 		

After a quotation mark outside square brackets, a word is delimited by a space, a square bracket, or
a parenthesis. 		

A word not after a quotation mark or inside square brackets is delimited by a
 space, a bracket, a parenthesis,
 or an infix operator + - * / ^ = < > += -= *= /= == != <= >=.

Note that words following colons are in this category. Note that quote and colon are not delimiters.
		

A word consisting of a question mark followed by a number
 ?37
when runparsed (i.e., where a procedure name is expected), is treated as if it were the sequence
 (? 37)
making the number an input to the ? procedure. (See the discussion of templates, below.) This
special treatment does not apply to words read as data, to words with a non-number following the
question mark, or if the question mark is backslashed. 		

A line (an instruction line or one read by READLIST or READWORD) can be continued onto the
following line if its last character is a
 tilde ~ .
READWORD preserves the tilde and the newline; READLIST does not. 		

Line Continuation: An instruction line or a line read by READLIST (but not by READWORD) is
automatically continued to the next line, as if ended with a tilde, if there are unmatched
 brackets, parentheses, braces, or vertical bars
pending. However, it's an error if the continuation line contains only the word END; this is to
prevent runaway procedure definitions. Lines eplicitly continued with a tilde avoid this restriction. 		

If a line being typed interactively on the keyboard is continued, either with a tilde or automatically,
Logo will display a tilde as a prompt character for the continuation line. 		

A semicolon begins a comment in an instruction line. Logo ignores characters from the semicolon
to the end of the line. A tilde as the last character still indicates a continuation line, but not a
continuation of the comment. 		

31
Tokenization

For example, typing the instruction
 print "abc;comment ~
 def

will print the word abcdef. Semicolon has no special meaning in data lines read by READWORD
or READLIST, but such a line can later be reparsed using RUNPARSE and then comments will be
recognized. 		

To include an otherwise delimiting character (including semicolon or tilde) in a word, precede it
with
 backslash \ .
If the last character of a line is a backslash, then the newline character following the backslash will
be part of the last word on the line, and the line continues onto the following line.
 To include a backslash in a word, use \\.
If the combination backslash-newline is entered at the terminal, Logo will issue a backslash as a
prompt character for the continuation line. All of this applies to data lines read with READWORD
or READLIST as well as to instruction lines. A character entered with backslash is EQUALP to the
same character without the backslash, but can be distinguished by the BACKSLASHEDP predicate.
(However, BACKSLASHEDP recognizes backslashedness only on characters for which it is
necessary:
 whitespace, parentheses, brackets, infix operators,
 backslash, vertical bar, tilde, quote,
 question mark, colon, and semicolon.)

An alternative notation to include otherwise delimiting characters in words is to enclose a group of
characters in vertical bars. All characters between vertical bars are treated as if they were letters. In
data read with READWORD the vertical bars are preserved in the resulting word. In data read with
READLIST (or resulting from a PARSE or RUNPARSE of a word) the vertical bars do not appear
explicitly; all potentially delimiting characters (including spaces, brackets, parentheses, and infix
operators) appear as though entered with a backslash. Within vertical bars, backslash may still be
used; the only characters that must be backslashed in this context are backslash and vertical bar
themselves. 		

Characters entered between vertical bars are forever special, even if the word or list containing them
is later reparsed with PARSE or RUNPARSE. Characters typed after a backslash are treated
somewhat differently: When a quoted word containing a backslashed character is runparsed, the
backslashed character loses its special quality and acts thereafter as if typed normally. This
distinction is important only if you are building a Logo expression out of parts, to be RUN later,
and want to use parentheses. 		

For example,

32
Tokenization

 PRINT RUN (SE "\(2 "+ 3 "\))
will print 5, but
 RUN (SE "MAKE ""|(| 2)
will create a variable whose name is open-parenthesis. (Each example would fail if vertical bars and
backslashes were interchanged.) 		

33
Data Structure Primitives

Data Structure Primitives

...are functions to construct data out of one or more inputs (constructors), 		

functions which select subranges of the input data (selectors), 		

functions which change the data itself (mutators), 		

functions asking for boolean properties of the input data (predicates), 		

and functions asking for non-boolean properties of the input data (queries). 		

Data Structure Primitives

• Constructors 34
• Selectors 49
• Mutators 57
• Predicates 64
• Queries 81

34
Data Structure Primitives / Constructors

Constructors

...are functions outputting new data formed by their inputs. 		

Constructors

• Word 34
• StringBuffer 35
• StringBufferToWord 35
• List 35
• Sentence 36, Se 36
• fPut 36
• lPut 37
• Array 37
• IntArray 38
• Int16Array 39
• FloatArray 40
• mdarray 40
• Table 41
• Struct 42
• toList 43
• combine 44
• reverse 44
• rotate 45
• shuffle 45
• merge 46
• mergePairs 46
• toListList 46
• mergeSort 47
• genSym 47
• replace 47
• deepCopy 48

Word word1 word2
(Word word1 word2 word3 ...)

outputs a word formed by concatenating its inputs. 		

35
Data Structure Primitives / Constructors / Word

Examples: 		

show word "hal "lo ;hallo
show (word [wor ld]) ;wor ld
show (word {a b c}) ;{a b c}
show word "12 "34 ;1234

StringBuffer length

outputs a word of length length , containing only null characters. This may be neccessary if one
uses DLCall and needs a string buffer. 		

Example: 		

to GetCurrentDirectory
 local [buf status w]
 buf=StringBuffer 256
 status=DLCall kernel32 [GetCurrentDirectoryA] (list "Int
 "bufferLength "Int 4*count buf
 "buffer "Word buf)
 output StringBufferToWord buf
end
kernel32=DynamicLibrary "kernel32
show GetCurrentDirectory

StringBufferToWord buf

outputs a new word which contains the first characters of the StringBuffer buf up to the first null
character. This function only makes sense with DLCall, else you'll probably never use it. For an
example see StringBuffer. 		

List thing1 thing2

36
Data Structure Primitives / Constructors / List

(List thing1 thing2 thing3 ...)

outputs a list whose members are its inputs, which can be any Logo datum (word, list, or array). 		

Examples: 		

show list "hallo "world ;[hallo world]
show list [] [] ;[[][]]
show (list "this "is "a "longer "List) ;[this is a longer list]
show list {arrays in}{a List} ;[{arrays in} {a List}]

Sentence thing1 thing2
Se thing1 thing2
(Sentence thing1 thing2 thing3 ...)
(Se thing1 thing2 thing3 ...)

outputs a list whose members are its inputs, if those inputs are not lists, or the members of its
inputs, if those inputs are lists. 		

Examples: 		

show se "Hallo "World ;[hallo world]
show se [Hallo][World] ;[Hallo World]
show (se [This is] "a "mixed [longer] [Sentence])
;[This is a mixed longer Sentence]
show (se "word [list] {array}) ;[word list {array}]

fPut thing list
fPut thing array

outputs a list equal to its second input with one extra member, the first input, at the beginning. 		

fPut is faster than lPut, because lists are in Logo built out of first-tail pairs. 		

37
Data Structure Primitives / Constructors / fPut

Array types are now supported (4.689). 		

Examples: 		

show fput "Hallo [World] ;[hallo World]
show fput [Hallo] [World] ;[[Hallo] World]
show fput "12 "34
; fput doesn't like 34 as input
show fput "12 [34] ;[12 34]
show fput "12 {34} ;{12 34}
show fput 12 FloatArray {34} ;{12 34}

lPut thing list

outputs a list equal to its second input with one extra member, the first input, at the end. 		

lPut is slow because internally the list must be gone through till its end, then the thing can be
appended. 		

Array types are now supported (4.689). 		

Examples: 		

show lput "World [Hallo] ;[Hallo world]
show lput [World] [Hallo] ;[Hallo [World]]
show lput 34 12
; lput doesn't like 12 as input
show lput 34 [12] ;[12 34]
show lput 34 {12} ;{12 34}

Array size
(Array size origin)
Array alist
Array aintarray
Array aint16array

38
Data Structure Primitives / Constructors / Array

Array anarray

outputs an array of " size " members (must be a positive integer), each of which initially is an empty
list. Array members can be selected with Item and changed with setItem. The first member of the
array is member number 1 unless an " origin " input (must be an integer) is given, in which case the
first member of the array has that number as its index. (Typically 0 is used as the origin if
anything.) Arrays are printed by PRINT and friends, and can be typed in, inside curly braces. @
indicates an origin . This primitive also can be used to convert alist , aint16array or aintarray to
an array, and to clone the array anarray . 		

Examples: 		

show array 3 ;{[] [] []}
show (array 3 0) ;{[] [] []}@0
show {h a l l o} ;{h a l l o}
show {a b c}@2 ;{a b c}@2
show Item 3 {a b c}@2 ;b

a={H a l l o}
setItem 2 a "e
show a ;{H e l l o}
Array [1 2 3] ;{1 2 3} ;-)
Array intarray [1 2 3] ;{1 2 3} ;-)
Array int16array [1 2 3] ;{1 2 3} ;-)

IntArray size
(IntArray size origin)
IntArray anarray
IntArray alist
IntArray anint16array
IntArray anintarray

outputs an IntArray of " size " members (must be a positive integer), each of which is an Int. Array
members can be selected with Item and changed with setItem. The first member of the IntArray is
member number 1 unless an " origin " input (must be an integer) is given, in which case the first
member of the IntArray has that number as its index. (Typically 0 is used as the origin if

39
Data Structure Primitives / Constructors / IntArray

anything.) Arrays are printed by PRINT and friends. This primitive also can be used to convert
alist , anarray or anint16array to IntArray, while clipping the values to the max and min integer.
It can also be used to clone anintarray . 		

Examples: 		

show IntArray 3 ;{0 0 0}
show (IntArray 3 0) ;{0 0 0}@0
show IntArray {1 2 3} ;{1 2 3}
show IntArray [1 2 3] ;{1 2 3}
show IntArray int16array {1 2 3} ;{1 2 3}
show intarray {a b c} ; intarray doesn't like {a b c} as input
show Item 3 intarray [1 2 3] ;3

Int16Array size
(Int16Array size origin)
Int16Array anarray
Int16Array alist
Int16Array anintarray
Int16Array anint16array

outputs an Int16Array of " size " members (must be a positive integer), each of which is an Int16.
Array members can be selected with Item and changed with setItem. The first member of the
Int16Array is member number 1 unless an " origin " input (must be an integer) is given, in which
case the first member of the Int16Array has that number as its index. (Typically 0 is used as the
origin if anything.) Arrays are printed by PRINT and friends. This primitive also can be used to
convert alist , anarray or anintarray to Int16Array, while clipping the values to the max and min
16 bit integer. It can also be used to clone anint16array . 		

Examples: 		

40
Data Structure Primitives / Constructors / Int16Array

show Int16Array 3 ;Int16Array {0 0 0}
show (Int16Array 3 0) ;Int16Array {0 0 0}@0
show Int16Array {1 2 3} ;Int16Array {1 2 3}
show Int16Array [1 2 3] ;Int16Array {1 2 3}
show Int16Array intarray {1 2 3} ;Int16Array {1 2 3}
show int16array {a b c} ; int16array doesn't like {a b c} as
input
show Item 3 int16array [1 2 3] ;3

FloatArray size
(FloatArray size origin)
FloatArray anarray
FloatArray alist
FloatArray anintarray
FloatArray anint16array

outputs a new FloatArray of " size " members (must be a positive integer), each of which is an
Float. Array members can be selected with Item and changed with setItem. The first member of the
FloatArray is member number 1 unless an " origin " input (must be an integer) is given, in which
case the first member of the FloatArray has that number as its index. (Typically 0 is used as the
origin if anything.) FloatArrays are printed by PRINT and friends. This primitive also can be used
to convert alist , anarray , anintarray or anint16array to FloatArray. It can also be used to clone
a floatarray. 		

Examples: 		

show FloatArray 3 ;{0 0 0}
show (FloatArray 3 0) ;{0 0 0}@0
show FloatArray {1 2 3} ;{1 2 3}
show FloatArray [1 2 3] ;{1 2 3}
show FloatArray int16array {1 2 3} ;{1 2 3}
show FloatArray {a b c} ; floatarray doesn't like {a b c} as
input
show Item 3 FloatArray [1 2 3] ;3

41
Data Structure Primitives / Constructors / mdarray

mdarray sizelist (library procedure)
(mdarray sizelist origin)

outputs a multi-dimensional array. The first input must be a list of one or more positive integers.
The second input, if present, must be a single integer that applies to every dimension of the array. 		

Example: 		

(MDARRAY [3 5] 0)		
outputs a two-dimensional array whose members range from [0 0] to [2 4]. 		

Examples: 		

mdarray [2] ;{[] []} ;-)
mdarray [2 3] ;{{[] [] []}{[] [] []}} ;-)
mdarray [2 3 4]
{ { {[] [] [] []}
 {[] [] [] []}
 {[] [] [] []}
 }
 { {[] [] [] []}
 {[] [] [] []}
 {[] [] [] []}
 }
} ;-)

Table size
Table alist

outputs a new hash table of size size which has initially no members if using the first form, else
the members are filled with alist . You can add new members by using setItem or the "t's=x"
operator. 		

Hash tables are very fast for word lookup, much faster than searching in a big list or plist (constant
time). 		

42
Data Structure Primitives / Constructors / Table

Example: 		

t=Table 5
setItem "a t 1234
show Item "a t ;1234
t'b=5678
show t'b ;5678
table [[a 1234][b 1.2]] ;[a 1234][b 1.2] ;-)

Struct typelist

outputs a new Struct, the members are filled with typelist . typelist is a list of lists, which contain a
field name, a field type and optionally a field item. The field type may be any of Int, Int16, Int8,
UInt8, Word, IntArray, Int16Array, FloatArray. The types Word, IntArray, Int16Array and
FloatArray require a third list item, the size. Having Word, size is the number of characters of the
Word. You can change members by using setItem or the "t's=x" operator. 		

Structs are, like Tables, very fast for word lookup, much faster than searching in a big list or plist
(constant time). 		

Example: 		

43
Data Structure Primitives / Constructors / Struct

wavHeaderType=(list
 [ChunkID Word RIFF]
 [wavfilesize Int]
 [RIFFtype Word 4] ;the last item is the string length

 [formatChunkID Word fmt\]
 [formatChunkSize Int 16]
 [compressionCode Int16 1]
 [NumberOfChannels Int16 1]
 (list "SampleRate "Int rate)
 (list "BytesPerSecond "Int rate*2)
 [BlockAlign Int16 2]
 [BitsPerSample Int16 16]

 [DataChunkID word data]
 (list "DataChunkSize "Int size*2)
)
wavHeader=struct wavHeaderType
wavsize=(SizeOf wavHeader)+size*2
wavHeader'RIFFtype=[WAVE] ;example for setting a string
wavHeader'wavfilesize=wavsize
pr wavHeader

toList atable
toList anArray
toList anIntArray
toList anInt16Array
toList aWord
tolist aNumber

When atable is the input, outputs a new list with sublists of the form [name value]. The names are
the names of the members, the values are the member's values. Else toList just converts the input
type to List. aWord is converted to a list of characters, the same with aNumber . 		

Example: 		

44
Data Structure Primitives / Constructors / toList

t=Table 5
t'a=1234
show t'a ;1234
t'b=[Hallo World!]
show t ;[a 1234][b [Hallo World!]]
l=TableToList t
show l ;[[a 1234][b [Hallo World!]]]

show toList {a b c} ;[a b c]
show toList intArray {1 2 3} ;[1 2 3]
show toList int16Array {1 2 3} ;[1 2 3]

show toList "Hallo ;[h a l l o]
show toList 1234 ;[1 2 3 4]
show toList 12.345 ;[1 2 . 3 4 5]

combine thing1 thing2
				(combine thing1 thing2 ...)

if thing2 is a word, outputs WORD thing1 thing2 . If thing2 is a list, outputs FPUT thing1
thing2 . 		

If the things are of the same array type, a new array of the same type but with all elements of the
input arrays is the output. 		

Examples: 		

show combine "ha "llo ;hallo
show combine "Hallo [World] ;[hallo World]
show combine {1 2 3}{4 5 6} ;{1 2 3 4 5 6}
show (combine {1 2 3}{4 5 6}{7 8}{9}) ;{1 2 3 4 5 6 7 8 9}
show combine FloatArray {1 2 3} FloatArray {4 5 6} ;{1 2 3 4 5
6}
show combine IntArray {1 2 3} IntArray {4 5 6} ;{1 2 3 4 5 6}
show combine Int16Array {1 2 3} Int16Array {4 5 6} ;{1 2 3 4 5
6}

45
Data Structure Primitives / Constructors / reverse

reverse thing

outputs a thing whose members are the members of the input, in reverse order. 		

Examples: 		

show reverse "HalloWorld ;dlrowollah ;-)
show reverse [Hallo World] ;[World Hallo]
show reverse [[a b][c d]] ;[[c d] [a b]]
show reverse {an array} ;{array an}

rotate array places

outputs a new array that is rotated against the array by places places . 		

Examples: 		

show rotate {h a l l o} 1 ;{o h a l l}
show rotate {h a l l o} -1 ;{a l l o h}
show rotate {1 2 3} 2 ;{2 3 1}

shuffle array

outputs a new array of the same type and length as the input, but with randomly shuffled elements.
		

Examples: 		

46
Data Structure Primitives / Constructors / shuffle

show shuffle {1 2 3 4 5 6 7 8 9} ;{7 2 9 4 5 1 6 8 3}
show shuffle FloatArray {1 2 3 4 5 6 7 8 9} ;{1 5 4 7 2 6 8 3
9}
show shuffle IntArray {1 2 3 4 5 6 7 8 9} ;{5 1 3 6 9 8 4 7 2}
show shuffle Int16Array {1 2 3 4 5 6 7 8 9} ;{8 5 7 2 6 3 1 4
9}

merge list1 list2

outputs a list consisting of the two lists elements merged in order. 		

Example: 		

merge [1 2 3][2 3 4]
[1 2 2 3 3 4]

mergePairs listOfTwoLists

outputs a list which contains the elements of the two lists elementwise sorted. 		

Example: 		

mergePairs [[2 4 1][3 6 5]]
[[2 3 4 1 6 5]
]
 ;-)

toListList list

47
Data Structure Primitives / Constructors / toListList

outputs a new list containing lists of one element of the list . 		

Example: 		

toListList [2 4 1 3]
[[2]
 [4]
 [1]
 [3]
]

mergeSort list1

outputs a new list containing the elements of list1 in alphabetical order. 		

Example: 		

show mergeSort [5 3 2 4 1 12] ;[1 12 2 3 4 5]
show mergeSort [d b c a aa] ;[a aa b c d]

genSym

outputs a unique word each time it's invoked. The words are of the form g1, g2, g3, etc. 		

Example: 		

show genSym ;g1, g2, g3...		

replace aword withaword inathing

48
Data Structure Primitives / Constructors / replace

outputs a new word with the first occurence of aword inathing replaced withaword . 		

Examples: 		

show replace "a "e "hallo ;"hello
show replace "abba "elle "jabbai ;"jellei
show replace "a "b [aaa] ;"abb
show replace "b "x {a b c} ;{a x c}

deepCopy athing

outputs a copy of athing . Lists and Arrays are iterated into, so if one mutates this copy, the original
 athing stays the same. 		

Examples: 		

a={1 2 3}
b=deepCopy a
a.2="hallo
b ;{1 2 3} ;-)

l=[1 2 3]
b=deepCopy l
l.2="hallo
b ;[1 2 3] ;-)

49
Data Structure Primitives / Selectors

Selectors

...output selected part(s) of the input data. 		

Selectors

• first 49
• firsts 50
• last 50
• butFirst 51, bF 51
• butFirsts 51, bFs 51
• butLast 52, bL 52
• Item 52
• mdItem 53
• BitItem 54
• pick 54
• items 54
• remove 55
• remDup 55
• quoted 55
• real 55
• imag 56
• conjugate 56

first thing

if the input is a word, outputs the first character of the word. 		

If the input is a list, outputs the first member of the list. 		

If the input is an Array, FloatArray, IntArray or Int16Array, outputs the first item of the array. 		

Examples: 		

50
Data Structure Primitives / Selectors / first

show first "Hallo ;h
show first [H a l l o] ;H
show first {H a l l o} ;H

firsts list

outputs a list containing the FIRST of each member of the input list . It is an error if any member
of the input list is empty. (The input itself may be empty, in which case the output is also empty.)
This could be written as 		

to firsts : list output map "first : list
end

but is provided as a primitive in order to speed up the iteration tools MAP, MAP_SE, and
FOREACH. 		

New in 4.689 is that Array arguments are now allowed. 		

Examples: 		

show firsts [[H a l l o] [W o r l d]] ;[H W]		

to transpose :matrix
 if emptyp first :matrix [op []]
 op fput firsts :matrix transpose bfs :matrix
end

show firsts {{1 2 3}[a b c]} ;{1 a}		

last thing

If the input is a word, outputs the last character of the word. If the input is a list, outputs the last
member of the list. If the input is an Array, FloatArray, IntArray or Int16Array, outputs the last item
of the array. 		

Examples: 		

51
Data Structure Primitives / Selectors / last

show last "Hallo ;o
show last [H a l l o] ;o
show last {H a l l o} ;o

butFirst wordorlist
bF wordorlist

if the input is a word, outputs a word containing all but the first character of the input. If the input is
a list, outputs a list containing all but the first member of the input. If the input is an Array,
FloatArray, IntArray or Int16Array, outputs an array of the same type as the input containing all but
the first member of the input. 		

Examples: 		

show bf "Hallo ;allo
show bf [Ha llo] ;[llo]
show bf {Ha llo} ;{llo}

butFirsts list
bFs list

outputs a list containing the BUTFIRST of each member of the input list . It is an error if any
member of the input list is empty. (The input itself may be empty, in which case the output is also
empty.) Array support added in 4.689. This could be written as 		

to butfirsts : list output map "butfirst : list
end

but is provided as a primitive in order to speed up the iteration tools MAP, MAP_SE, and
FOREACH. 		

Example: 		

52
Data Structure Primitives / Selectors / butFirsts

show bfs [[Ha llo][Wor ld]] ;[[llo][ld]]
show bfs {{Ha llo}[Wor ld]} ;{{llo}[ld]}

butLast wordorlist
bL wordorlist

if the input is a word, outputs a word containing all but the last character of the input. If the input is
a list, outputs a list containing all but the last member of the input. If the input is an Array,
FloatArray, IntArray or Int16Array, outputs an array of the same type as the input containing all but
the last member of the input. 		

Example: 		

show bl [Hallo World] ;[Hallo]
show bl "Hallo ;hall
show bl {Hallo World} ;{Hallo}

				outputitem Item index athing
outputitem thingname. index outputitem tablename' index

if athing is a word, outputs the " index "th character of the word. If athing is a list, outputs the "
index "th member of the list. If athing is an array, outputs the " index "th item of the array. Index
starts at 1 for words and lists; the starting index of an array is specified when the array is created. 		

If index is a list and athing is a list, or if index is an Array and athing is an Array, or if index
is an IntArray and athing is an FloatArray, then a list of the items indexed by the index list
elements is the result of Item. This is nice for permutations, as seen in the example. 		

The dot and singlequote notation is experimental, but very comfortable. 		

Examples: 		

w="hallo
show Item 2 w ;a
w.2 ;a

53
Data Structure Primitives / Selectors / Item

l=[a b c]
show l.3 ;c

a=array 4
show a.1 ;[]

l=[[a b][c d][e f]]
show (l.3).1 ;e

t=table 5
t'a=1234
show item "a t ;1234
show t'a ;1234

Item [1 3 6][10 20 30 40 50 60] ;[10 30 60]
Item IntArray [1 3 6] FloatArray[10 20 30 40 50 60] ;{10 30 60}
;-)
Item {1 3 6}{10 20 30 40 50 60} ;{10 30 60} ;-)

a={1 2 3 4 5 6}
p={6 3 4 5 1 2}
repeat 6 [a=Item p a pr a]
{6 3 4 5 1 2}
{2 4 5 1 6 3}
{3 5 1 6 2 4}
{4 1 6 2 3 5}
{5 6 2 3 4 1}
{1 2 3 4 5 6}

mdItem indexlist anarray

outputs the member of the multidimensional anarray selected by the list of numbers indexlist . 		

Example: 		

54
Data Structure Primitives / Selectors / mdItem

a={{{1 2}{3 4}}{3 4}}
mdItem [1 2 1] a ;3

a=[[[1 2][3 4]][5 6]]
mdItem [1 2 1] a ;3

a=[Hallo World]
mdItem [2 3] a ;r

BitItem index athing

outputs either true or false, depending on the value of the " index "th bit of athing . 		

Examples: 		

show BitItem 0 5 ;true
show BitItem 1 5 ;false
show BitItem 2 5 ;true
show BitItem 3 5 ;false
show BitItem 7 int8 -1 ;true
show BitItem 0 int8 -1 ;true

pick list

outputs a randomly chosen member of the input list . 		

Example: 		

show pick [a b c] ;a, b or c randomly
show pick "abc ;the same output

items startindex endindex athing

55
Data Structure Primitives / Selectors / items

outputs the items from startindex to endindex of athing . At the moment athing can only be an
array, intarray or int16array. 		

Examples: 		

show items 1 3 {a b c d e f} ;{a b c}
show items 3 5 {a b c d e f} ;{c d e}

remove thing listorword

outputs a copy of " listorword " with every member equal to " thing " removed. 		

Examples: 		

show remove "lo [Hal lo Wor ld] ;[Hal Wor ld]
show remove "l "HalloWorld ;haoword
show remove [] [[] a [] b [] c []] ;[a b c]

remDup listorword

outputs a copy of " listorword " with duplicate members removed. If two or more members of the
input are equal, the rightmost of those members is the one that remains in the output. 		

Examples: 		

show remDup [H a l l o W o r l d] ;[H a W o r l d]
show remDup "HalloWorld ;haworld

quoted thing						 (library procedure)

outputs its input, if a list; outputs its input with a quotation mark prepended, if a word. 		

56
Data Structure Primitives / Selectors / real

				realPart real complexNumber

outputs the realPart of a complexNumber as a real floating point number. 		

Example: 		

show real 3+4i ;3
show real list 1+2i 3+4i ;[1 3]

				imaginaryPart imag complexNumber

outputs the imaginaryPart of the complexNumber as a real floating point number. 		

Example: 		

show imag 3+4i ;4
show imag list 1+2i 3+4i ;[2 4]

				conjugated conjugate complexNumber

outputs the complex conjugated to the complexNumber . This is like (real z)-1i*(imag z). 		

Example: 		

show conjugate 1+2i ;1-2i
show conjugate list 1+2i 3+4i ;[1-2i 3-4i]

57
Data Structure Primitives / Mutators

Mutators

...change the input data. 		

Mutators

• setItem 57
• _setItem 58
• mdSetItem 58
• setItems 59
• removeItem 59
• _setFirst 60
• _setButFirst 60
• _setBF 60
• push 61
• pop 61
• queue 62
• dequeue 62

setItem index thing value

command. Replaces the " index "th member of "array" with the new " value ". SetItem Ensures
that the resulting array is not circular, i.e.,	" value " may not be a list or array that contains "array".
		

Examples: 		

a=[H a l l o]
setItem 2 a "e
show a ;[H e l l o]

a={W o r l d}
setItem 3 a "a
show a ;{W o a l d}

58
Data Structure Primitives / Mutators / setItem

a="hallo
setItem 2 a "e
show a ;hello

_setItem index array value
thing. index = value table' index = value

command. Changes the " index "th member of " array " to be " value ", like SETITEM, but without
checking for circularity. WARNING: Primitives whose names start with a underbar are
DANGEROUS. Their use by non-experts is not recommended. The use of _setItem can lead to
circular arrays, which will get some Logo primitives into infinite loops; and the loss of memory if a
circular structure is released. 		

The experimental dot notation is still in test phase; index cannot be an expression yet. 		

The singlequote ' notation is also experimental. 		

Examples: 		

l=[a b c]
l.2="hallo
l
 [a hallo c]
 ;-)
_setItem 3 l 333
l
 [a hallo 333]
 ;-)
t=table 5
setItem "a t 1234
t ;[a 1234] ;-)
t'b=5678
t ;[a 1234][b 5678] ;-)

mdSetItem indexlist array value

59
Data Structure Primitives / Mutators / mdSetItem

command. Replaces the member of " array " chosen by " indexlist " with the new " value ". 		

Examples: 		

a={{1 2}{3 4 5}}
mdSetItem [2 3] a "so
show a ;{{1 2}{3 4 so}}

a=[Hallo World]
mdSetItem [2 3] a "a
show a ;[Hallo Woald]

setItems startindex athing newitems

command. It sets the elements starting from startindex of athing to the elements of newitems .
athing and newitems need not to be of the same type, but only Array, IntArray and Int16Array are
supported so far. 		

Example: 		

a={1 2 3 4}
setitems 2 a {7 8}
show a
{1 7 8 4}

removeItem index thing

removes the indexth member of the input thing , which may be a word, list or table. 		

In case of thing being a list with only one member, the list will contain an empty list after
removing the first member. This looks strange, but it's not possible to avoid this, except making
removeItem a selector instead of a mutator, which would be much more slow. 		

60
Data Structure Primitives / Mutators / removeItem

Examples: 		

w="aword
removeItem 2 w
w ;aord ;-)
l=[a b c]
removeItem 2 l
l ;[a c] ;-)
removeItem 1 l
l ;[c] ;-)
removeItem 1 l
l ;[[]] ;-)
t=table 3
t'a=1234
t'b=5678
t'c=9012
removeItem "b t
t ;[a 1234][c 9012] ;-)

_setFirst list value

command. Changes the first member of " list " to be " value ". WARNING: Primitives whose
names start with a underbar are DANGEROUS. Their use by non-experts is not recommended. The
use of _setFirst can lead to circular list structures, which will get some Logo primitives into
infinite loops; unexpected changes to other data structures that share storage with the list being
modified; and the loss of memory if a circular structure is released. 		

Example: 		

a=[1 2]
_setfirst a -first a
show a ;[-1 2]

_setButFirst list value

61
Data Structure Primitives / Mutators / _setBF

_setBF list value

command. Changes the butfirst of " list " to be " value ". WARNING: Primitives whose names start
with a underbar are DANGEROUS. Their use by non-experts is not recommended. The use of
_setbf can lead to circular list structures, which will get some Logo primitives into infinite loops;
unexpected changes to other data structures that share storage with the list being modified; Logo
crashes and coredumps if the butfirst of a list is not itself a list ; and the loss of memory if a
circular structure is released. 		

Example: 		

a=[1 2]
_setbf a [-2]
show a ;[1 -2]

push stackname thing

command. Adds the " thing " to the stack that is the value of the variable whose name is "
stackname ". This variable must have a list as its value; the initial value should be the empty list.
New members are added at the front of the list. 		

Examples: 		

s=[]
push "s "Hallo
show s ;[hallo]
push "s "World
show s ;[world hallo]

pop stackname

outputs the most recently PUSHed member of the stack that is the value of the variable whose name
is " stackname " and removes that member from the stack. 		

62
Data Structure Primitives / Mutators / pop

Examples: 		

s=[world hallo]
show pop "s ;world
show s ;[hallo]
show pop "s ;hallo
show s ;[]

queue queuename thing

command. Adds the " thing " to the queue that is the value of the variable whose name is "
queuename ". This variable must have a list as its value; the initial value should be the empty list.
New members are added at the back of the list, so this is a bit slow because the whole list must be
traversed till its end. 		

Examples: 		

q=[]
queue "q "Hallo
show q ;[hallo]
queue "q "World
show q ;[hallo world]

dequeue queuename

outputs the least recently QUEUEd member of the queue that is the value of the variable whose
name is " queuename " and removes that member from the queue. 		

dequeue is an alias for pop. 		

Examples: 		

63
Data Structure Primitives / Mutators / dequeue

q=[Hallo World]
show dequeue "q ;Hallo
show q ;[World]
show dequeue "q ;World
show q ;[]

64
Data Structure Primitives / Predicates

Predicates

...ask for boolean (true or false) properties of the input data. 		

Predicates

• WordP 64
• ListP 65
• ArrayP 65
• emptyP 66
• equalP 66
• beforeP 67
• _eq 67
• MemberP 68
• subStringP 69
• NameInTableP 69
• NumberP 69
• CharP 70
• IntP 70
• Int16P 71
• Int8P 71
• UInt8P 72
• floatP 72
• complexP 73
• backslashedP 73
• circularP 74
• AlNumP 74
• AlphaP 74
• ASCIIP 75
• CntrlP 75
• CSymP 76
• DigitP 76
• GraphP 77
• LowerP 77
• PrintP 78
• PunctP 78
• SpaceP 79
• UpperP 79
• xDigitP 80

65
Data Structure Primitives / Predicates / WordP

WordP thing
Word? thing

outputs TRUE if the input is a word, FALSE otherwise. 		

Examples: 		

Word? " ;true ;-)
Word? [] ;false ;-)
Word? "aWord ;true ;-)
Word? [a list] ;false ;-)
Word? {an array} ;false ;-)
Word? (Word [a list]) ;true ;-)

ListP thing
List? thing

outputs TRUE if the input is a list, FALSE otherwise. 		

Examples: 		

List? [Hallo World] ;true ;-)
List? [] ;true ;-)
List? " ;false ;-)
List? "Hallo ;false ;-)
List? {an array} ;false ;-)
List? (list "Hallo) ;true ;-)
List? (list {an array}) ;true ;-)

ArrayP thing
Array? thing

outputs TRUE if the input is an array, FALSE otherwise. 		

66
Data Structure Primitives / Predicates / ArrayP

Examples: 		

Array? {Hallo World} ;true ;-)
Array? {} ;true ;-)
Array? {1 2 3} ;true ;-)
Array? [] ;false ;-)
Array? [a list] ;false ;-)
Array? "aWord ;false ;-)
Array? ListToArray [Hallo World] ;true ;-)

emptyP thing
empty? thing

outputs TRUE if the input is the empty word or the empty list, FALSE otherwise. 		

Examples: 		

empty? " ;true ;-)
empty? [] ;true ;-)
empty? "Hallo ;false ;-)
empty? [Hallo] ;false ;-)
empty? {} ;false ;-)

equalP thing1 thing2
equal? thing1 thing2
 thing1 == thing2

outputs TRUE if the inputs are equal, FALSE otherwise. 		

Two numbers are equal if they have the same numeric value. 		

Two non-numeric words are equal if they contain the same characters in the same order. 		

If CaseIgnored? is true set by "setCaseIgnored true", then an upper case letter is considered the

67
Data Structure Primitives / Predicates / equalP

same as the corresponding lower case letter (This is the case by default.). 		

Two lists or arrays are equal if their members are equal. 		

Examples: 		

equal? true false ;false ;-)
equal? true true ;true ;-)
equal? false false ;true ;-)
equal? 1234 2345 ;false ;-)
equal? pi 3.14 ;false ;-)
equal? "A "a ;true ;-)
equal? "Hallo "World ;false ;-)
equal? [Hallo] [World] ;false ;-)
equal? [Hallo] [Hallo] ;true ;-)
equal? {1 2} {1 2} ;true ;-)
equal? {1 2} {3 4} ;false ;-)

beforeP word1 word2
before? word1 word2

outputs TRUE if word1 comes before word2 in ASCII collating sequence (for words of letters, in
alphabetical order). Case-sensitivity is determined by the value of CaseIgnoredP. Note that if the
inputs are numbers, the result may not be the same as with LESSP; 		

for example,
 BEFOREP 3 12
is false because 3 collates after 1. 		

Examples: 		

before? 3 12 ;false ;-)
less? 3 12 ;true ;-)
before? "A "B ;true ;-)
before? [A] [B] ;true ;-)
before? [World] [Hallo] ;false ;-)

68
Data Structure Primitives / Predicates / _eq

_eq thing1 thing2

outputs TRUE if its two inputs are the same datum, so that applying a mutator to one will change
the other as well. 		

Outputs FALSE otherwise, even if the inputs are equal in value. 		

WARNING: Primitives whose names start with a underbar are DANGEROUS. Their use by
non-experts is not recommended. The use of mutators can lead to circular data structures, infinite
loops, or Logo crashes. 		

Examples: 		

_eq 1 1 ;false ;-)
a=1
_eq a a ;true ;-)
_eq a 1 ;false ;-)

_eq [a] [a] ;false ;-)
a=[a]
_eq a [a] ;false ;-)
_eq a a ;true ;-)

MemberP thing1 thing2
Member? thing1 thing2

if " thing2 " is a list or an array, outputs TRUE if " thing1 " is EQUALP to a member of " thing2 ",
FALSE otherwise. 		

If " thing2 " is a word, outputs TRUE if " thing1 " is a one-character word EQUALP to a	character
of " thing2 ", FALSE otherwise. 		

Examples: 		

69
Data Structure Primitives / Predicates / MemberP

Member? "a "Hallo ;true ;-)
Member? "Hallo [Hallo World] ;true ;-)
Member? "Hallo {Hallo World} ;true ;-)
Member? " [] ;false ;-)

subStringP thing1 thing2
subString? thing1 thing2

if " thing1 " or " thing2 " is a list or an array, outputs FALSE. If	" thing2 " is a word, outputs TRUE
if " thing1 " is EQUALP to a substring of " thing2 ", FALSE otherwise. 		

Examples: 		

subString? "Hal "Hallo ;true ;-)
subString? "Hal [Hallo] ;false ;-)

NameInTableP name table
NameInTable? name table

outputs true if there's an item with name name in the table . 		

Examples: 		

t= table [[a 1234][b 5678]]
NameInTable? "a t ;true ;-)
NameInTable? "c t ;false ;-)

NumberP thing
Number? thing

outputs TRUE if the input is a number, FALSE otherwise. 		

70
Data Structure Primitives / Predicates / NumberP

Examples: 		

Number? 1234 ;true ;-)
Number? "1234 ;false ;-)
Number? 2i ;true ;-)
Number? 2.2 ;true ;-)
Number? [1234] ;false ;-)
Number? {1} ;false ;-)

CharP thing
Char? thing

outputs TRUE if the input is a character (a string with length 1), FALSE otherwise. 		

Examples: 		

Char? "A ;true ;-)
Char? Char 27 ;true ;-)
Char? "Hallo ;false ;-)
Char? [A] ;false ;-)
Char? 1 ;false ;-)
Char? "1 ;true ;-)
Char? " ;false ;-)
Char? [] ;false ;-)

IntP thing
Int? thing

outputs TRUE if the input is a integer (32 bit), FALSE otherwise. 		

Examples: 		

71
Data Structure Primitives / Predicates / IntP

int? 1234 ;true ;-)
int? 1.2 ;false ;-)
int? -IntMax ;true ;-)
int? int 1.2 ;true ;-)
int? [1] ;false ;-)
int? {1} ;false ;-)
int? "1 ;false ;-)
int? int "1 ;true ;-)

Int16P thing
Int16? thing

outputs TRUE if the input is a 16 bit integer, FALSE otherwise. 		

Examples: 		

int16? int16 1234 ;true ;-)
int16? 1234 ;false ;-)
int16? 1.2 ;false ;-)
int16? Int16Max ;true ;-)
int16? Int16 1.2 ;true ;-)
int16? [1] ;false ;-)
int16? {1} ;false ;-)
int16? "1 ;false ;-)
int16? Int16 "1 ;true ;-)

Int8P thing
Int8? thing

outputs TRUE if the input is a 8 bit integer, FALSE otherwise. 		

Examples: 		

72
Data Structure Primitives / Predicates / Int8P

int8? int8 127 ;true ;-)
int8? 1234 ;false ;-)
int8? Int8Max ;true ;-)
int8? 1.2 ;false ;-)
int8? [1] ;false ;-)
int8? "1 ;false ;-)
int8? int8 "1 ;true ;-)

UInt8P thing
UInt8? thing

outputs TRUE if the input is a 8 bit unsigned integer, FALSE otherwise. 		

Examples: 		

uint8? uint8 255 ;true ;-)
uint8? 1234 ;false ;-)
uint8? UInt8Max ;true ;-)
uint8? 1.2 ;false ;-)

floatP thing
float? thing

outputs TRUE if the input is a floating point number, FALSE otherwise. 		

Examples: 		

73
Data Structure Primitives / Predicates / floatP

float? 1.2 ;true ;-)
float? 1e-10 ;true ;-)
float? pi ;true ;-)
float? FloatMax ;true ;-)
float? "1 ;false ;-)
float? "1.2 ;false ;-)
float? float "1.2 ;true ;-)

complexP thing
complex? thing

outputs TRUE if the input is a complex number, FALSE otherwise. 		

Examples: 		

complex? 1i ;true ;-)
complex? 1.2+2.3e6i ;true ;-)
complex? 1.2 ;false ;-)
complex? "1i ;false ;-)

backslashedP char
backslashed? char

outputs TRUE if the input character was originally entered into Logo with a backslash (\) before it
or within vertical bars (|) to prevent its usual special syntactic meaning, FALSE otherwise.
(Outputs TRUE only if the character is a 		

backslashed space, tab, newline, carriage return or one of		

()[]{}<>;|~"\+-*/^=:?.		
Examples: 		

74
Data Structure Primitives / Predicates / backslashedP

backslashed? "\\ ;true ;-)
backslashed? "\[;true ;-)
backslashed? "\= ;true ;-)
backslashed? "\a ;false ;-)

circularP thing
circular? thing

outputs true if the input is a circular array or list structure. This helps finding circularity bugs if you
use underbar _functions. 		

Examples: 		

a=[1]
_setFirst a a
circular? a ;true ;-)

a=[1]
_setbf a a
circular? a ;true ;-)

AlNumP achar
AlNum? achar

outputs true if the input is a character in the subset of alphanumeric characters. 		

Examples: 		

alnum? "a ;true ;-)
alnum? "A ;true ;-)
alnum? "1 ;true ;-)
alnum? 1 ;false ;-)
alnum? "ü ;true ;-)
alnum? "! ;false ;-)

75
Data Structure Primitives / Predicates / AlphaP

AlphaP achar
Alpha? achar

outputs true if the input is a character in the subset of alphabetic characters. 		

Examples: 		

alpha? "a ;true ;-)
alpha? "A ;true ;-)
alpha? "1 ;false ;-)
alpha? 1 ;false ;-)
alpha? "ü ;true ;-)
alpha? "! ;false ;-)

ASCIIP achar
ASCII? achar

outputs true if the input is a character in the subset of ASCII characters. 		

Examples: 		

ASCII? "a ;true ;-)
ASCII? "A ;true ;-)
ASCII? "1 ;true ;-)
ASCII? 1 ;false ;-)
ASCII? "ü ;false ;-)
ASCII? "! ;true ;-)

CntrlP achar
Cntrl? achar

outputs true if the input is a character in the subset of control characters. 		

76
Data Structure Primitives / Predicates / CntrlP

Examples: 		

cntrl? "a ;false ;-)
cntrl? "A ;false ;-)
cntrl? "1 ;false ;-)
cntrl? 1 ;false ;-)
cntrl? "ü ;true ;-)
cntrl? "! ;false ;-)
cntrl? char 13 ;true ;-)

CSymP achar
CSym? achar

outputs true if the input is a character in the subset of C symbol characters. 		

Examples: 		

csym? "a ;true ;-)
csym? "A ;true ;-)
csym? "1 ;true ;-)
csym? 1 ;false ;-)
csym? "ü ;true ;-)
csym? "! ;false ;-)
csym? char 13 ;false ;-)

DigitP achar
Digit? achar

outputs true if the input is a character in the subset of numerical digit characters. 		

Examples: 		

77
Data Structure Primitives / Predicates / DigitP

digit? "a ;false ;-)
digit? "A ;false ;-)
digit? "1 ;true ;-)
digit? 1 ;false ;-)
digit? "ü ;true ;-) <= this seems to be a bug!!!
digit? "! ;false ;-)
digit? char 13 ;false ;-)

GraphP achar
Graph? achar

outputs true if the input is a character in the subset of graphical characters. 		

Examples: 		

graph? "a ;true ;-)
graph? "A ;true ;-)
graph? "1 ;true ;-)
graph? 1 ;false ;-)
graph? "ü ;true ;-)
graph? "! ;true ;-)
graph? char 13 ;false ;-)

LowerP achar
Lower? achar

outputs true if the input is a character in the subset of lowercase characters. 		

Examples: 		

78
Data Structure Primitives / Predicates / LowerP

lower? "a ;true ;-)
lower? "A ;true ;-) <= in case-insensitive mode!!!
lower? "1 ;false ;-)
lower? 1 ;false ;-)
lower? "ü ;false ;-) <= bug?
lower? "! ;false ;-)
lower? char 13 ;false ;-)

PrintP achar
Print? achar

outputs true if the input is a character in the subset of printable characters. 		

Examples: 		

print? "a ;true ;-)
print? "A ;true ;-)
print? "1 ;true ;-)
print? 1 ;false ;-)
print? "ü ;true ;-)
print? "! ;true ;-)
print? char 13 ;false ;-)

PunctP achar
Punct? achar

outputs true if the input is a character in the subset of punctation characters. 		

Examples: 		

79
Data Structure Primitives / Predicates / PunctP

punct? "a ;false ;-)
punct? "A ;false ;-)
punct? "1 ;false ;-)
punct? 1 ;false ;-)
punct? "ü ;true ;-) <= bug?
punct? "! ;true ;-)
punct? char 13 ;false ;-)

SpaceP achar
Space? achar

outputs true if the input is a character in the subset of space characters. 		

Examples: 		

space? "a ;false ;-)
space? "A ;false ;-)
space? "1 ;false ;-)
space? 1 ;false ;-)
space? "ü ;false ;-)
space? "! ;false ;-)
space? char 13 ;true ;-)
space? "\ ;true ;-)

UpperP achar
Upper? achar

outputs true if the input is a character in the subset of uppercase characters. 		

Examples: 		

80
Data Structure Primitives / Predicates / UpperP

upper? "a ;false ;-)
upper? "A ;false ;-) <= in case-insensitive mode!!!
upper? "1 ;false ;-)
upper? 1 ;false ;-)
upper? "ü ;true ;-) <= bug!
upper? "! ;false ;-)
upper? char 13 ;false ;-)
upper? "\ ;false ;-)

xDigitP achar
xDigit? achar

outputs true if the input is a character in the subset of hexadecimal digit characters. 		

Examples: 		

xdigit? "a ;true ;-)
xdigit? "A ;true ;-)
xdigit? "1 ;true ;-)
xdigit? 1 ;false ;-)
xdigit? "ü ;false ;-)
xdigit? "! ;false ;-)
xdigit? char 13 ;false ;-)
xdigit? "\ ;false ;-)

81
Data Structure Primitives / Queries

Queries

...ask for properties of the input data. 		

Queries

• count 81
• SizeOf 82
• TypeOf 82
• ASCII 83
• rawASCII 83
• Char 84
• Member 84
• lowerCase 84
• upperCase 85
• standout 85
• parse 86
• runParse 86
• BackslashEncode 86

count thing

outputs the number of characters in the input, if the input is a word. outputs the number of members
in the input, if it is a list, array or table (For an array, this may or may not be the index of the last
member, depending on the array's origin.). For a table, count outputs not the table size, but the
number of items set. 		

Examples: 		

count "Hallo ;5 ;-)
count 1234 ;4 ;-)
count [Hallo World] ;2 ;-)
count {a b c} ;3 ;-)
count [[][]] ;2 ;-)

82
Data Structure Primitives / Queries / count

t=table 3
count t ;0 ;-)
t'a=1234
count t ;1 ;-)
t'b=567
count t ;2 ;-)
t'c=890
count t ;3 ;-)
removeItem "b t
count t ;2 ;-)
t ;[a 1234][c 890] ;-)

SizeOf x

outputs the size in bytes which will be needed on typebin x . 		

Examples: 		

sizeof int 1 ;4 ;-)
sizeof int16 1 ;2 ;-)
sizeof int8 1 ;1 ;-)
sizeof UInt8 1 ;1 ;-)
sizeof 1.1 ;8 ;-)
sizeof 1i ;16 ;-)
sizeof "abc ;3 ;-)
sizeof intarray 3 ;12 ;-)
sizeof int16array 5 ;10 ;-)
sizeof [123456 a] ;7 ;-) (counting the characters)
sizeof {1 2 3} ;3 ;-) (counting the characters)
sizeof struct [[a int][b int16][c int8]] ;7 ;-)

TypeOf x

outputs a word representing the type of x . 		

83
Data Structure Primitives / Queries / TypeOf

Examples: 		

typeof int 1 ;Int ;-)
typeof int16 1 ;Int16 ;-)
typeof int8 1 ;Int8 ;-)
typeof uint8 1 ;UInt8 ;-)
typeof 1.1 ;Float ;-)
typeof 1i ;Complex ;-)
typeof "abc ;Word ;-)
typeof [] ;List ;-)
typeof [1 2 3] ;List ;-)
typeof {1 2 3} ;Array ;-)
typeof intarray 3 ;IntArray ;-)
typeof struct [[a int][b int8]] ;Struct ;-)

ASCII char

outputs the integer (between 0 and 255) that represents the input character in the ASCII code.
Interprets control characters as representing backslashed punctuation, and returns the character code
for the corresponding punctuation character without backslash. (Compare RAWASCII.) 		

Examples: 		

ASCII "a ;97 ;-)
ASCII 0 ;48 ;-)
ASCII "\[;91 ;-)
ASCII Char 1 ;40 ;-)
Char 40 ;(;-)

rawASCII char

outputs the integer (between 0 and 255) that represents the input character in the ASCII code.
Interprets control characters as representing themselves. To find out the ASCII code of an arbitrary
keystroke, use RAWASCII RC. 		

84
Data Structure Primitives / Queries / rawASCII

Example: 		

forever [show rawASCII rc]		

Char aint

outputs the character represented in the ASCII code by the input, which must be an integer between
0 and 255. 		

Examples: 		

Char 65 ;A ;-)
Char 66 ;B ;-)
Char 97 ;a ;-)
Char 98 ;b ;-)
Char 48 ;0 ;-)
Char 49 ;1 ;-)

Member thing1 thing2

if " thing2 " is a word or list and if MEMBERP with these inputs would output TRUE, outputs the
portion of " thing2 " from the first instance of " thing1 " to the end. If MEMBERP would output
FALSE, outputs the empty word or list according to the type of " thing2 ". It is an error for " thing2
" to be an array (because butFirst does not work for arrays). 		

Examples: 		

Member "a "Hallo ;allo ;-)
Member "Hal "Hallo ; ;-)
Member? "Hal "Hallo ;false ;-)
Member "World [Hallo World] ;[World] ;-)
Member "b {a b c} ; member doesn't like {a b c} as input

85
Data Structure Primitives / Queries / lowerCase

lowerCase word

outputs a copy of the input word , but with all uppercase letters changed to the corresponding
lowercase letter. 		

Examples: 		

lowerCase "HALLO ;hallo ;-)
show lowerCase [H A L L O] ;h a l l o
show lowerCase {H A L L O} ;{h a l l o}

upperCase word

outputs a copy of the input word , but with all lowercase letters changed to the corresponding
uppercase letter. 		

Examples: 		

upperCase "hallo ;HALLO ;-)
show upperCase [h a l l o] ;H A L L O
show upperCase {h a l l o} ;{H A L L O}

standout thing

does not work yet. (forget the rest of this description!) 		

outputs a word that, when printed, will appear like the input but displayed in standout mode
(boldface, reverse video, or whatever your terminal does for standout). The word contains
terminal-specific magic characters at the beginning and end; in between is the printed form (as if
displayed using TYPE) of the input. The output is always a word, even if the input is of some other
type, but it may include spaces and other formatting characters. Note: a word output by
STANDOUT while Logo is running on one terminal will probably not have the desired effect if
printed on another type of terminal. 		

86
Data Structure Primitives / Queries / standout

On the Macintosh, the way that standout works is incompatible with the use of characters whose
ASCII code is greater than 127. Therefore, you have a choice to make: The instruction
 CANINVERSE 0
disables standout, but enables the display of ASCII codes above 127, and the instruction
 CANINVERSE 1
restores the default situation in which standout is enabled and the extra graphic characters cannot be
printed. 		

parse word

outputs the list that would result if the input word were entered in response to a READLIST
operation. That is, PARSE READWORD has the same value as READLIST for the same
characters read. 		

Example: 		

parse "fd\ 100 ;[fd 100] ;-)		

runParse wordorlist

outputs the list that would result if the input word or list were entered as an instruction line;
characters such as infix operators and parentheses are separate members of the output. Note that
sublists of a runparsed list are not themselves runparsed. 		

Examples: 		

runParse "1\+2 ;[1 + 2] ;-)
runParse [(1+2)*3] ;[(1 + 2) * 3] ;-)

BackslashEncode achar

outputs a new vbarstring with encoded backslashes of achar . 		

87
Data Structure Primitives / Queries / BackslashEncode

BackslashEncode char 9
| | ;-)
BackslashEncode char 13
|
| ;-)

88
Communication

Communication

Here are functions concerning output and input from and to Logo. 		

Communication

• Transmitters 89
• Receivers 92
• FileAccess 100
• Environment 115
• Terminal Access 119
• Port Input and Output 124
• Timing 127
• Dynamic Libraries 129

89
Communication / Transmitters

Transmitters

...are commands which write to the current writer (using the console as default). 		

Note: If there is a variable named PRINTDEPTHLIMIT with a nonnegative integer value, then
complex list and array structures will be printed only to the allowed depth. That is, members of
members of... of members will be allowed only so far. The members omitted because they are just
past the depth limit are indicated by an ellipsis for each one, so a too-deep list of two members will
print as [... ...]. 		

If there is a variable named PRINTWIDTHLIMIT with a nonnegative integer value, then only the
first so many members of any array or list will be printed. A single ellipsis replaces all missing data
within the structure. The width limit also applies to the number of characters printed in a word,
except that a PRINTWIDTHLIMIT between 0 and 9 will be treated as if it were 10 when applied to
words. This limit applies not only to the top-level printed datum but to any substructures within it. 		

Transmitters

• print 89, pr 89
• type 90
• show 90
• dir 91
• dirlg 91
• displaymatrix 91

print thing
pr thing
(print thing1 thing2 ...)
(pr thing1 thing2 ...)

command. Prints the input or inputs to the current write stream (initially the terminal). All the
inputs are printed on a single line, separated by spaces, ending with a newline. If an input is a list,
square brackets are not printed around it, but brackets are printed around sublists. Braces are
always printed around arrays. 		

Examples: 		

90
Communication / Transmitters / print

pr 1234 ;1234
pr pi ;3.14159
pr "Hallo ;hallo
pr [Hallo World!] ;Hallo World!
pr {an array} ;{an array}
pr [[sublist][structure]] ;[sublist][structure]
(pr) ;prints an empty line
(pr "one "two "three) ;one two three
(pr 1 "one [One] {one}) ;1 one One {one}

type thing
(type thing1 thing2 ...)

command. Prints the input or inputs like PRINT, except that no newline character is printed at the
end and multiple inputs are not separated by spaces. Note: printing to the terminal is ordinarily
"line buffered"; that is, the characters you print using TYPE will not actually appear on the screen
until either a newline character is printed (for example, by PRINT or SHOW) or Logo tries to read
from the keyboard (either at the request of your program or after an instruction prompt). This
buffering makes the program much faster than it would be if each character appeared immediately,
and in most cases the effect is not disconcerting. To accommodate programs that do a lot of
positioned text display using TYPE, Logo will force printing whenever SETCURSOR is invoked.
This solves most buffering problems. Still, on occasion you may find it necessary to force the
buffered characters to be printed explicitly; this can be done using the WAIT command. WAIT 0
will force printing without actually waiting. 		

Examples: 		

(type "Hallo "World)
(pr) ;halloworld
(type [Hallo] [World])
(pr) ;HalloWorld
(type [Hallo][World!])
wait 0 ;HalloWorld!

show thing

91
Communication / Transmitters / show

(show thing1 thing2 ...)

command. Prints the input or inputs like PRINT, except that if an input is a list it is printed inside
square brackets. 		

Example: 		

show [this is a list] ;[this is a list]		

dir			(library procedure)

command printing the file list of the current working directory using the output of shell. 		

dirlg			(library procedure)

command printing the logo (*.lg) file list of the current working directory	using the output of shell.
This is a very useful command to browse the *.lg examples. 		

displaymatrix			(library procedure)

displays a matrix in the console. 		

Examples: 		

displaymatrix [[1 2][3 4]]
 1.000 3.000
 2.000 4.000

displaymatrix {{1 2}{3 4}}
 1.000 3.000
 2.000 4.000

92
Communication / Receivers

Receivers

...receive one or more data form either the keyboard, a file or from the operating system. 		

Receivers

• readList 92, rL 92
• readWord 93, rW 93
• readChar 93, rC 93
• readCharExt 94, rCE 94
• readChars 95, rCs 95
• readIntBin 95
• readInt16Bin 95
• readInt8Bin 95
• readUInt8Bin 96
• readFloatBin 96
• readComplexBin 96
• readIntArrayBin 96
• readInt16ArrayBin 96
• readFloatArrayBin 96
• readStructBin 97
• Shell 97
• ShellSpawn 97
• LogoVersion 98
• OSScreenSize 98

readList
rL

reads a line from the read stream (initially the terminal) and outputs that line as a list. The line is
separated into members as though it were typed in square brackets in an instruction. If the read
stream is a file, and the end of file is reached, READLIST outputs the empty word (not the empty
list). READLIST processes backslash, vertical bar, and tilde characters in the read stream; the
output list will not contain these characters but they will have had their usual effect. READLIST
does not, however, treat semicolon as a comment character. 		

Example: 		

93
Communication / Receivers / readList

readList
a b c (1+2)*3 ;[a b c (1+2)*3] ;-)

readWord
rW

reads a line from the read stream and outputs that line as a word. The output is a single word even if
the line contains spaces, brackets, etc. If the read stream is a file, and the end of file is reached,
READWORD outputs the empty list (not the empty word). READWORD processes backslash,
vertical bar, and tilde characters in the read stream. In the case of a tilde used for line continuation,
the output word DOES include the tilde and the newline characters, so that the user program can tell
exactly what the user entered. Vertical bars in the line are also preserved in the output. Backslash
characters are not preserved in the output, but the character following the backslash has 128 added
to its representation. Programs can use BACKSLASHEDP to check for this code.
(Backslashedness is preserved only for certain characters. See BACKSLASHEDP.) 		

Example: 		

readWord
a b c (1+2)*3 ;a\ b\ c\ \(1\+2\)*3 ;-)

readChar
rC

reads a single character from the read stream and outputs that character as a word. If the read
stream is a file, and the end of file is reached, READCHAR outputs the empty list (not the empty
word). If the read stream is a terminal, echoing is turned off when READCHAR is invoked, and
remains off until READLIST or READWORD is invoked or a Logo prompt is printed. Backslash,
vertical bar, and tilde characters have no special meaning in this context. 		

Extensions: If the read stream is the keyboard and special keys like the arrow keys or numpad keys
are typed, then rc returns char 255 and a consecutive call to readCharExt returns the extended char
value. 		

94
Communication / Receivers / readChar

Example: 		

to keyptest
 forever
 [if key?
 [c=readchar
 ifelse c == char 255
 [c=readCharExt
 (pr "ext c)
]
 [(pr rawASCII c c)
]
]
]
end

readCharExt
rCE

If the read stream is the keyboard and special keys like the arrow keys are typed, then rc returns
char 255 and a consecutive call to readCharExt returns the extended char value. 		

Output is the extended char value as an integer number. 		

Example: 		

95
Communication / Receivers / readCharExt

to keyptest
 forever
 [if key?
 [c=readchar
 ifelse c == char 255
 [c=readCharExt
 (pr "ext c)
]
 [(pr rawASCII c c)
]
]
]
end

readChars num
rCs num

reads " num " characters from the read stream and outputs those characters as a word. If the read
stream is a file, and the end of file is reached, READCHARS outputs the empty list (not the empty
word). If the read stream is a terminal, echoing is turned off when READCHARS is invoked, and
remains off until READLIST or READWORD is invoked or a Logo prompt is printed. Backslash,
vertical bar, and tilde characters have no special meaning in this context. 		

readIntBin

reads an integer (32 bit) from the read stream and outputs it as a new integer. 		

readInt16Bin

reads an integer (16 bit) from the read stream and outputs it as a new Int16. 		

96
Communication / Receivers / readInt8Bin

readInt8Bin

reads an integer (8 bit) from the read stream and outputs it as a new Int8. 		

readUInt8Bin

reads an unsigned integer (8 bit) from the read stream and outputs it as a new UInt8. 		

readFloatBin

reads a float (64 bit) from the read stream and outputs it as a new float. 		

readComplexBin

reads a complex float (2*64 bit) from the read stream and outputs it as a new complex. 		

readIntArrayBin size

reads an IntArray (size *32 bit) from the read stream and outputs it as a new IntArray. 		

readInt16ArrayBin size

reads an Int16Array (size *16 bit) from the read stream and outputs it as a new Int16Array. 		

97
Communication / Receivers / readFloatArrayBin

readFloatArrayBin size

reads an FloatArray (size *64 bit) from the read stream and outputs it as a new FloatArray. 		

readStructBin astruct

reads an Struct from the read stream and outputs it as a new Struct. 		

Shell command
(Shell command wordflag)

Outputs the result of running " command " as a shell command . (The command is sent to /bin/sh,
not csh or other alternatives.) If the command is a literal list in the instruction line, and if you want
a backslash character sent to the shell, you must use \\ to get the backslash through Logo's reader
intact. The output is a list containing one member for each line generated by the shell command .
Ordinarily each such line is represented by a list in the output, as though the line were read using
READLIST. If a second input is given, regardless of the value of the input, each line is represented
by a word in the output as though it were read with READWORD. 		

Example: 		

to dir
 foreach bf bf bf shell [dir]
 [if not empty? ?
 [(pr last ? "\; butlast bf bf ?)
]
]
end

The Macintosh, of course, is not programmable. 		

98
Communication / Receivers / ShellSpawn

ShellSpawn command

runs " command " as a shell command but unlike shell does not collect the output and does not
wait for the operation to complete. 		

Example: 		

make "WebBrowser "|C:\\Progra\~1\\Intern\~1\\iexplore|
; make "WebBrowser
"|C:\\bin\\netscape\\program\\netscape.exe| ;as another example
make "HTMLHelpDir "C:\\aUCBLogo\\help

if not shellspawn (list (word :WebBrowser "| | :HTMLHelpDir "\\
"index.frame.html))
[pr [File Not Found]
]

LogoVersion

outputs a list with four elements: 1) the name of the Logo translator, 2) the version number of the
Logo translator (float), 3) the operating system name, 4) the version number of the operating
system. 		

Example: 		

show LogoVersion ;[aUCBLogo 4.689 Windows NT 5.1]		

OSScreenSize

outputs a list of two integer numbers, width and height of the computer's current screen resolution.
		

Example: 		

99
Communication / Receivers / OSScreenSize

show OSScreenSize ;[1280 1024]		

100
Communication / FileAccess

FileAccess

...are functions for opening, positioning and closing files. 		

FileAccess

• openRead 100
• openReadBin 102
• openWrite 103
• openWriteBin 103
• openAppend 104
• openAppendBin 104
• openUpdate 105
• openUpdateBin 105
• close 105
• allOpen 106
• closeall 106
• eraseFile 106, erF 106
• dribble 107
• noDribble 107
• setReader 107
• setWriter 108
• Reader 109
• Writer 109
• setReaderPos 109
• setWriterPos 110
• ReaderPos 110
• WriterPos 110
• EofP 110
• FileSize 111
• FileTime 111
• FileP 111
• DirectoryP 111
• getWorkingDirectory 112
• changeDir 112, cd 112
• makeDirectory 112
• Files 113
• loadpalette 113

101
Communication / FileAccess / openRead

openRead filename

command. Opens the named file for reading. The read position is initially at the beginning of the
file. 		

Example: 		

openRead "tree.lg
setReader "tree.lg
while [not eof?] [pr readWord]

Whose output is: 		

to tree [level 7][size 100]
 if level==0 [stop]
 fd size
 lt 80
 tree2 level-1 size/2
 rt 70
 (tree level-1 size*2/3)
 rt 90
 tree2 level-1 size/2
 lt 80
 bk size
end size

102
Communication / FileAccess / openRead

to tree2 level size
 if level==0 [stop]
 fd size
 rt 80
 (tree level-1 size/2)
 lt 70
 tree2 level-1 size*2/3
 lt 90
 (tree level-1 size/2)
 rt 40
 (tree level-1 size*4/5)
 rt 40
 bk size
end size

Then you can ask: 		

ReaderPos ;387 ;-)		

openReadBin filename

command. Opens the named file for binary reading. The read position is initially at the beginning
of the file. 		

Example: 		

103
Communication / FileAccess / openReadBin

to loadpalette file
 local [mypal]
 mypal=array 2^8
 openReadBin file
 setReader file
 while [not eof?]
 [mypal.repcount=(rgb
 (rawASCII readChar)/2^8
 (rawASCII readChar)/2^8
 (rawASCII readChar)/2^8)
]
 close file
 setReader []
 output mypal
end
loadpalette "topograf.pal

openWrite filename

command. Opens the named file for writing. If the file already existed, the old version is deleted
and a new, empty file created. 		

Example: 		

openWrite "temp.txt
setWriter "temp.txt
pr [This is a test file!]
setWriter []
close "temp.txt

And the file "temp.txt" then contains the line:
 This is a test file!

openWriteBin filename

104
Communication / FileAccess / openWriteBin

command. Opens the named file for binary writing. If the file already existed, the old version is
deleted and a new, empty file created. 		

Example: 		

openWrite "temp.txt
setWriter "temp.txt
repeat 256 [type char repcount]
setWriter []
close "temp.txt

And the file "temp.txt" then should contain all the 256 chars. 		

openAppend filename

command. Opens the named file for writing. If the file already exists, the write position is initially
set to the end of the old file, so that newly written data will be appended to it. 		

Example: 		

openAppend "temp.txt
setWriter "temp.txt
pr [and a line more]
close "temp.txt
writer ;[temp.txt] ;-)
setWriter []

And "temp.txt" contains maybe this: 		

This is a test file!
and a line more

openAppendBin filename

105
Communication / FileAccess / openAppendBin

command. Opens the named file for binary writing. If the file already exists, the write position is
initially set to the end of the old file, so that newly written data will be appended to it. 		

See openAppend! 		

openUpdate filename

command. Opens the named file for reading and writing. The read and write position is initially set
to the end of the old file, if any. Note: each open file has only one position, for both reading and
writing. If a file opened for update is both READER and WRITER at the same time, then
SETREADERPOS will also affect WRITERPOS and vice versa. Also, if you alternate reading and
writing the same file, you must SETREADERPOS between a write and a read, and
SETWRITERPOS between a read and a write. 		

Example: 		

openUpdate "temp.txt
setReader "temp.txt
pr readlist ;This is a test file!
pr readlist ;and a line more
setReader []
close "temp.txt

openUpdateBin filename

command. Opens the named file for binary reading and writing. The read and write position is
initially set to the end of the old file, if any. Note: each open file has only one position, for both
reading and writing. If a file opened for update is both READER and WRITER at the same time,
then SETREADERPOS will also affect WRITERPOS and vice versa. Also, if you alternate reading
and writing the same file, you must SETREADERPOS between a write and a read, and
SETWRITERPOS between a read and a write. 		

See openUpdate! 		

106
Communication / FileAccess / close

close filename

command. Closes the named file. 		

Example: 		

openRead "temp.txt
close "temp.txt

allOpen

outputs a list whose members are the names of all files currently open. This list does not include the
dribble file, if any. 		

Example: 		

openRead "temp.txt
show allOpen ;[temp.txt]
close "temp.txt

closeall						(library procedure)

command. Closes all open files. Abbreviates FOREACH ALLOPEN [CLOSE ?] 		

eraseFile filename
erF filename

command. Erases (deletes, removes) the named file, which should not currently be open. 		

Example: 		

107
Communication / FileAccess / eraseFile

eraseFile "temp.txt		

dribble filename

command. Creates a new file whose name is the input, like OPENWRITE, and begins recording in
that file everything that is read from the keyboard or written to the terminal. That is, this writing is
in addition to the writing to WRITER. The intent is to create a transcript of a Logo session,
including things like prompt characters and interactions. 		

Example: 		

dribble "temp.txt
callttt

Then play Tic-Tac-Toe and execute: 		

noDribble		
After all this a transscript of the game should be in the file "temp.txt". 		

noDribble

command. Stops copying information into the dribble file, and closes the file. 		

setReader filename
setReader anintarray
setReader anint16array

command. Makes the named file, anintarray or anint16array the read stream, used for
READLIST, etc. The file must already be open with OPENREAD or OPENUPDATE. If the input
is the empty list, then the read stream becomes the terminal, as usual. Changing the read stream
does not close the file that was previously the read stream, so it is possible to alternate between
files. 		

108
Communication / FileAccess / setReader

See also: openRead, setWriter, readIntBin 		

setWriter filename
setWriter anintarray
setWriter anint16array

command. Makes the named file, anintarray or anint16array the write stream, used for PRINT,
etc. The file must already be open with OPENWRITE, OPENAPPEND, or OPENUPDATE. If the
input is the empty list, then the write stream becomes the terminal, as usual. Changing the write
stream does not close the file that was previously the write stream, so it is possible to alternate
between files. On writing to anintarray or anint16array it need not to be opened before this
command. 		

Examples:
 [DataChunkID word data]
 (list "DataChunkSize "Int size*2)
)
 wavHeader=struct wavHeaderType
 wavsize=(SizeOf wavHeader)+size*2
 wavHeader'RIFFtype=[WAVE] ;example for setting a string
 wavHeader'wavfilesize=wavsize
 pr wavHeader
 wav=Int16Array int wavsize/2
 setWriter wav
 typeBin wavHeader
 repeat size
 [phi=360*repcount/rate
 typebin Int16 16383*((sin 40*phi)
 - (sin 41*phi))
]
 setWriter []
 setReader wav
 wh=readStructBin wavHeaderType
 pr wh
 setReader []
 playWave wav 1+8
 ignore readChar
 playWave [] 0

109
Communication / FileAccess / setWriter

end

Reader

outputs the name of the current read stream file, or the empty list if the read stream is the terminal.
		

Writer

outputs the name of the current write stream file, or the empty list if the write stream is the terminal.
		

setReaderPos charpos

command. Sets the file pointer of the read stream file so that the next READLIST, etc., will begin
reading at the " charpos "th character in the file, counting from 0. (That is, SETREADERPOS 0
will start reading from the beginning of the file.) Meaningless if the read stream is the terminal. 		

Example: 		

openWrite "temp.txt
setWriter "temp.txt
pr [This is a temp file]
setWriter []
close "temp.txt

110
Communication / FileAccess / setReaderPos

openRead "temp.txt
setReader "temp.txt
pr readList ;This is a temp file
setReaderPos 6
pr readList ;s a temp file
ReaderPos ;21 ;-)
close "temp.txt
setReader []

setWriterPos charpos

command. Sets the file pointer of the write stream file so that the next PRINT, etc., will begin
writing at the " charpos "th character in the file, counting from 0. (That is, SETWRITERPOS 0
will start writing from the beginning of the file.) Meaningless if the write stream is the terminal. 		

Works like setReaderPos, but for the Writer. 		

ReaderPos

outputs the file position of the current read stream file. 		

WriterPos

outputs the file position of the current write stream file. 		

EofP
Eof?

111
Communication / FileAccess / EofP

predicate, outputs TRUE if there are no more characters to be read in the read stream file, FALSE
otherwise. 		

FileSize filename

outputs the size of the file named filename . The file must be open. 		

Example: 		

openread "bounce3.lg
filesize "bounce3.lg ;3784 ;-)
close "bounce3.lg

FileTime filename

outputs the creation time and date of the file named filename in the following list: [Hour Minute
Second MilliSecond DayOfWeek Day Month Year] 		

Example: 		

FileTime "bounce3.lg		

FileP filename
File? filename

predicate, outputs TRUE if a file of the specified name exists and can be read, FALSE otherwise. 		

Examples: 		

FileP "bounce.lg ;true ;-)
FileP "csls ;false ;-)

112
Communication / FileAccess / DirectoryP

DirectoryP dirname
Directory? dirname

outputs true if the directory named dirname exists. 		

Examples: 		

Directory? "csls ;true ;-)
Directory? "bounce.lg ;false ;-)

getWorkingDirectory

outputs the current working directory. 		

Example: 		

getWorkingDirectory ;C:\aucblogo ;-)		

changeDir path
cd path

command which changes the current working directory to path . 		

Examples: 		

cd "csls
ttt
cd "..
bounce

makeDirectory dirname

113
Communication / FileAccess / makeDirectory

command to create a directory named dirname in the current working directory. 		

Examples: 		

makeDirectory [TestDir]
makeDirectory "testdir2

Files
(Files filespec flags)

outputs the files matching the filespec and flags in the current working directory. 		

 filespec is a string containing some wildcards like * and ?. 		

 flags can be a combination of: 		

wxDIR_FILES	include files 		

wxDIR_DIRS	include directories 		

wxDIR_HIDDEN	include hidden files 		

wxDIR_DOTDOT	include '.' and '..' 		

Examples:		

show Files ;...
show (Files [a*.lg] wxDIR_FILES)
;[am.lg am2.lg ant.lg ant2.lg arc2test.lg axes.lg]

loadpalette palname

114
Communication / FileAccess / loadpalette

operation which outputs an array of 256 integers representing the rgb-colors of the palette file
palname . 		

Example: 		

topograf=loadpalette "topograf.pal
setPenSize [10 10]
repeat 256 [
 setPenColor topograf.repcount
 fd 1
]

115
Communication / Environment

Environment

For customizing the Logo environment, file and dir locations, the most important can now be read
and changed: 		

Environment

• LogoComspec 115
• setLogoComspec 115
• LogoEditor 116
• setLogoEditor 116
• LogoHelpDir 116
• setLogoHelpDir 116
• LogoLibDir 117
• setLogoLibDir 117
• LogoTempDir 117
• setLogoTempDir 117

LogoComspec

outputs the OS environment variable COMSPEC or the path set by setLogoComspec, which should
point to the command shell of the OS. 		

Example: 		

show LogoComspec ;C:\WINDOWS\system32\cmd.exe		

setLogoComspec path

Command to change the internal environment variable COMSPEC to the path path . This variable
is used to localize the command shell, called in Shell and ShellSpawn. 		

Example: 		

116
Communication / Environment / setLogoComspec

setLogoComspec "|D:\WINXP\system32\cmd.exe|		

LogoEditor

outputs the environment variable AEDITOR or the path set by setLogoEditor, which is either an
empty word or the path to the external editor that Logo should call. 		

Example: 		

show LogoEditor ;c:\programme\crimson editor\cedt.exe		

setLogoEditor path

Command to change the internal environment variable AEDITOR to the path path . The edit
primitive will call that program pointed to by path . 		

Examples: 		

setLogoEditor [C:\\Programme\\Crimson Editor\\cedt.exe]
setLogoEditor "

LogoHelpDir

outputs the environment variable ALOGOHELP or the path set by setLogoEditor, which is assumed
as the path to the help files aucblogo/help/*.txt. 		

Example: 		

show LogoHelpDir ;help		

setLogoHelpDir

117
Communication / Environment / setLogoHelpDir

Command to change the internal environment variable ALOGOHELP to the path path. The help
primitive will read the help files from this location. 		

Example: 		

setLogoHelpDir [C:\\aucblogo\\help] ;for an absolut path		

LogoLibDir

outputs the environment variable ALOGOLIB or the path set by setLogoLibDir, which will be
taken as the location of the library procedures, normally found in aucblogo/lib/*.lg. 		

Example: 		

show LogoLibDir ;C:\aUCBLogo\lib		

setLogoLibDir path

Command to change the internal environment variable ALOGOLIB to the path path . The Logo
Reader will load library procedures from this location. 		

Example: 		

setLogoLibDir [C:\\aucblogo\\lib]		

LogoTempDir

outputs the environment variable ATEMP or the path set by setLogoTempDir, where temporary
edit session files are saved. This is normally aucblogo/temp. 		

Example: 		

show LogoTempDir ;C:\aUCBLogo\TEMP		

118
Communication / Environment / setLogoTempDir

setLogoTempDir

Command to change the internal environment variable ATEMP to the path path. That's where
temporary edit session files are saved. 		

Example: 		

setLogoTempDir [C:\\aucblogo\\temp]		

119
Communication / Terminal Access

Terminal Access

These are functions controlling the text console. 		

Terminal Access

• KeyP 119
• clearText 119, cT 119
• setCursor 120
• Cursor 120
• CharUnderCursor 120
• WordUnderCursor 120
• setMargins 121
• setTextColor 121, setTC 121
• setTextFont 121
• setTextSize 122
• boldTextMode 122
• plainTextMode 122
• insertMode 122
• overwriteMode 122
• setTextSelection 123
• enableTextMouseEvents 123
• disableTextMouseEvents 123

KeyP
Key?

predicate, outputs TRUE if there are characters waiting to be read from the read stream. If the read
stream is a file, this is equivalent to NOT EOFP. If the read stream is the terminal, then echoing is
turned off and the terminal is set to CBREAK (character at a time instead of line at a time) mode. It
remains in this mode until some line-mode reading is requested (e.g., READLIST). The Unix
operating system forgets about any pending characters when it switches modes, so the first KEYP
invocation will always output FALSE. 		

clearText

120
Communication / Terminal Access / clearText

cT

command. Clears the text screen of the terminal. 		

setCursor vector

command. The input is a list of two numbers, the x and y coordinates of a screen position (origin in
the upper left corner, positive direction is southeast). The screen cursor is moved to the requested
position. This command also forces the immediate printing of any buffered characters. 		

Examples: 		

setCursor [10 3]
setCursor [0 0]

Cursor

outputs a list containing the current x and y coordinates of the screen cursor. Logo may get
confused about the current cursor position if, e.g., you type in a long line that wraps around or your
program prints escape codes that affect the terminal strangely. 		

CharUnderCursor

outputs the char under the cursor in the text console. This is very nice for cursorgames. See cursorgame.lg! 		

WordUnderCursor

121
Communication / Terminal Access / WordUnderCursor

outputs the word under the cursor in the text console. This is very nice for textmode menus. See the
linked help helpwalk.lg! 		

setMargins vector

does not work yet. 		

command. The input must be a list of two numbers, as for SETCURSOR. The effect is to clear the
screen and then arrange for all further printing to be shifted down and to the right according to the
indicated margins. Specifically, every time a newline character is printed (explicitly or implicitly)
Logo will type x_margin spaces, and on every invocation of SETCURSOR the margins will be
added to the input x and y coordinates. (CURSOR will report the cursor position relative to the
margins, so that this shift will be invisible to Logo programs.) The purpose of this command is to
accommodate the display of terminal screens in lecture halls with inadequate TV monitors that miss
the top and left edges of the screen. 		

setTextColor foreground background
setTC foreground background

command (Windows and DOS extended only). The inputs are color numbers, as for turtle graphics.
 Future printing to the text window will use the specified colors for foreground (the characters
printed) and background (the space under those characters). Using STANDOUT will revert to the
default text window colors. 		

See also setPC and the color database. 		

setTextFont fontName

command which selects the fontName font into the console window. fontName is a string or a list
of strings. 		

Example: 		

122
Communication / Terminal Access / setTextFont

setTextFont [Courier New]
pr [Hallo]

setTextSize size

command which sets the size of new text in the console window. size should be in moderate
range (0..600). 		

Example: 		

setTextSize 20		

boldTextMode

switches the console to bold text mode. 		

plainTextMode

turns bold text mode in the console off. 		

insertMode

command. Switches the console to insert mode. See cursorgame.lg!
		

overwriteMode

123
Communication / Terminal Access / overwriteMode

command. Switches the console to overwrite mode. See cursorgame.lg! 		

setTextSelection startposlist endposlist

command. Sets the current selection in the text console to the range from startposlist to endposlist
. The poslists should be valid cursor locations. 		

Example: 		

setTextSelection [1 1][10 1]
setTextSelection [0 0][0 0]

enableTextMouseEvents

enables automatic processing of mouse events in the text console. This is the default status, so you
can set the cursor clicking with the mouse, and select text with the mouse. 		

disableTextMouseEvents

disables automatic processing of mouse events in the text console. This can be very useful if you
need full control over the cursor position and over text selections, like in textmodevalues.lg. You now cannot set the cursor clicking with
the mouse, or select text with the mouse. 		

124
Communication / Port Input and Output

Port Input and Output

Here is a group of functions to set, get and manipulate IO ports via io.dll. 		

Port Input and Output

• PortOut 124
• PortIn 124
• setPortBit 124
• clearPortBit 125
• getPortBit 125
• notPortBit 125
• leftPortShift 125
• rightPortShift 125

PortOut adress num

command which sets the 8 bit unsigned integer num to the port adress . 		

Example: 		

PortOut 888 255
;...sets all bits on the standard parallel port

PortIn adress

outputs the value of the bits of the port at adress . 		

Example: 		

show PortIn 888		

125
Communication / Port Input and Output / setPortBit

setPortBit adress bitnr

command that sets the bit number bitnr of the port adress to logic high. 		

Example: 		

setPortBit 888 3		

clearPortBit

command that clears the bit number bitnr of the port adress to logic low. 		

Example: 		

clearPortBit 888 3		

getPortBit adress bitnr

outputs the boolean value of the bit bitnr of the port adress . 		

notPortBit adress bitnr

command which toggles the bit bitnr in the port adress . 		

leftPortShift adress bitnr

command that shifts the bits of the port adress by bitnr to the left. 		

126
Communication / Port Input and Output / rightPortShift

rightPortShift adress bitnr

command that shifts the bits of the port adress by bitnr to the right. 		

127
Communication / Timing

Timing

...functions are good to write machine independent timing, 		

and to read the system time. 		

Timing

• TimeFine 127
• TimeMilli 127
• TimeU 127
• TimeURes 127
• TimerFreq 128
• Time 128
• MIPS 128

TimeFine

outputs the system time in seconds as a floating point number. 		

TimeMilli

outputs the system time in milliseconds as a floating point number. 		

TimeU

outputs the system time in microseconds as a floating point number. 		

TimeURes

128
Communication / Timing / TimeURes

outputs the system time resolution in microseconds as a floating point number. 		

TimerFreq

outputs the system time frequency in megaherz as a floating point number. 		

				datetimelist Time

outputs a list containing the current real time clock time in a list: [Hour Minute Second MilliSecond
DayOfWeek Day Month Year] 		

				mipsvalue MIPS

outputs the million instructions per second of the current machine, which is very useful for writing
machine-independent timing. 		

129
Communication / Dynamic Libraries

Dynamic Libraries

Here are a constructor for a dynamic library node which can be assigned to a variable and a
dynamic library call function. 		

Dynamic Libraries

• DynamicLibrary 129
• DynamicLibraryCall 130, DLCall 130

DynamicLibrary dlname

outputs a new dynamic library node with the name dlname which can be assigned to a variable for
usage with DLCall. The dynamic library is being loaded and stays in memory as long as the
variable, to which it is assigned, exists. 		

Examples: 		

to FindWindowA title
 output DLCall user32 [FindWindowA] (list "Int
 "Class "Int 0
 "Title "Word title)
end
to SetFocus hWnd
 ignore DLCall user32 [SetFocus] (list "Int
 "hWnd "Int hWnd)
end
user32=DynamicLibrary "user32
hWnd=FindWindowA [aUCBLogo-4.67]
SetFocus hWnd

130
Communication / Dynamic Libraries / DynamicLibrary

to GetCurrentDirectory
 local [buf status w]
 buf=StringBuffer 256
 status=DLCall kernel32 [GetCurrentDirectoryA] (list "Int
 "bufferLength "Int 4*count buf
 "buffer "Word buf)
 output StringBufferToWord buf
end
kernel32=DynamicLibrary "kernel32
show GetCurrentDirectory

DynamicLibraryCall aDynamicLibrary dlfunctionname paramlist
DLCall aDynamicLibrary dlfunctionname paramlist

command or operation, depending on first of paramlist . The function with name dlfunctionname
in the dynamic library aDynamicLibrary is being called, if aDynamicLibrary has been set to a
loaded DynamicLibrary. dlfunctionname can also be a list with one element because so you can
use case sensitive names without having to setCaseIgnored false. 		

The first item of paramlist is the return type of the function. It can be one of the following words:
		

"Int
"Int16
"Int8
"UInt8
"Float
"Word
"Void

Then the function's parameters follow in groups of three: 		

1.) The name of the parameter, which is only for documentation, 		

2.)	The type of the parameter, which can be one of the following words: 		

131
Communication / Dynamic Libraries / DynamicLibraryCall

"Int
"IntPtr
"Int16
"Int16Ptr
"Int8
"Int8Ptr
"UInt8
"UInt8Ptr
"Float
"FloatPtr
"Word
"IntArray
"Int16Array

The DLCall primitive supports now argument-by-pointer when "IntPtr, "Int16Ptr, "Int8Ptr,
"UInt8Ptr or "FloatPtr are specified as argument type. 		

3.) The value of the parameter, which must match the type. 		

Examples: 		

132
Communication / Dynamic Libraries / DynamicLibraryCall

to FindWindowA title
 output DLCall user32 [FindWindowA] (list "Int
 "Class "Int 0
 "Title "Word title)
end
to GetWindowRect hWnd
 local [status iarr]
 iarr=IntArray 4
 status=DLCall user32 [GetWindowRect] (list "Int
 "hWnd "Int hWnd
 "rect "IntArray iarr)
 output iarr
end
to MoveWindow hWnd x y
 local [xy status]
 rect=GetWindowRect hWnd
 status=DLCall user32 [MoveWindow] (list "Int
 "hWnd "Int hWnd
 "X "Int x
 "Y "Int y
 "nWidth "Int rect.3-rect.1
 "nHeight "Int rect.4-rect.2
 "bRepaint "Int 1)
end
user32=DynamicLibrary "user32
hWnd=FindWindowA [aUCBLogo-4.67]
MoveWindow hWnd 200 100

133
Arithmetic

Arithmetic

In this group are numeric operations for computing, arithmetic mutators which change data itself
mathematically, arithmetic predicates to ask boolean questions on numbers, functions for random
numbers and rational numbers (fractions), print formatting and bitwise operations. 		

Arithmetic

• Numeric Operations 134
• Arithmetic Mutators 160
• Arithmetic Predicates 162
• Random Numbers 165
• Rational numbers 167
• Print formatting 170
• Bitwise Operations 172

134
Arithmetic / Numeric Operations

Numeric Operations

...are needed for numeric computations. 		

Most of them also work on list and array structures containing numbers (if they work on lists, then
they also work on arrays). In such a case, for a binary function, the first input sets the output
structure, so if the first input is a number, then the result is a number, too. 		

The numeric operations which take two arguments (binary math functions)	are non-commutative
primitives, so the order or arguments does matter, if one arg is a list and the other a scalar. It was
much easier to make all binary math functions non-commutative than only just
some of them. 		

You can also use numeric infix operators + - * / for computations. 		

Numeric Operations

• Sum 135
• Difference 136
• Minus137
• Product 137
• Quotient 138
• Remainder 138
• Modulo 139, mod 139
• Float 139
• BigFloat 140
• BigFloatSetPrecision 140
• Int 140
• Int16 141
• Int8 141
• UInt8 142
• round 142
• truncate 143, trunc 143
• abs 143
• Signum 143
• Sqr 144
• Sqrt 144
• Power 145
• exp 145

135
Arithmetic / Numeric Operations

• Log10 145
• LN146
• Sin 146
• radSin 147
• Cos 147
• radCos 148
• Tan 148
• radTan 148
• ArcSin 149
• radArcSin 149
• ArcCos 150
• radArcCos 150
• ArcTan 150
• radArcTan 151
• Faculty 151
• factorize 152
• min 152
• max 153
• Norm 153
• maxNorm 153
• iSeq 154
• rSeq 154
• rSeqFloatArray 154, rSeqFA 154
• gcd 155
• lcm 155
• resize 155
• lowPassFilter 156
• saturateAbove 156
• saturateBelow 157
• cross 157
• invertMatrix 157
• transposematrix 158, transpose 158
• MandelIterate 158

Sum num1 num2
(Sum num1 num2 num3 ...)
 num1 + num2

outputs the sum of its inputs. 		

136
Arithmetic / Numeric Operations / Sum

It's a non-commutative primitive (like all binary math functions), so the order or arguments does
matter, if one arg is a list and the other a scalar. 		

Example: 		

1+2 ;3 ;-)
1.2+2.4 ;3.6 ;-)
1i+2i ;0+3i ;-)
[1 2]+[3 4] ;[4 6] ;-)
[1 2]+3 ;[4 5] ;-)
1+[2 3] ;6 ;-)

sum 1 2 ;3 ;-)
sum 1.2 2.4 ;3.6 ;-)
sum 1i 2i ;0+3i ;-)
sum [1 2][3 4] ;[4 6] ;-)
sum [1 2] 3 ;[4 5] ;-)
sum 1 [2 3] ;6 ;-)
(sum 1 2 3 4 5) ;15 ;-)

Difference num1 num2
 num1 - num2

outputs the difference of its inputs. Minus sign means infix difference in ambiguous contexts
(when preceded by a complete expression), unless it is preceded by a space and followed by a
nonspace. 		

Examples: 		

1-2 ;-1 ;-)
1.2-2.4 ;-1.2 ;-)
1i-2i ;0-1i ;-)
[1 2]-[3 4] ;[-2 -2] ;-)
[1 2]- 3 ;[-2 -1] ;-)
1-[2 3] ;-4 ;-)

137
Arithmetic / Numeric Operations / Difference

Difference 1 2 ;-1 ;-)
Difference 1.2 2.4 ;-1.2 ;-)
Difference 1i 2i ;0-1i ;-)
Difference [1 2][3 4] ;[-2 -2] ;-)
Difference [1 2] 3 ;[-2 -1] ;-)
Difference 1 [2 3] ;-4 ;-)

Minus num
- num

outputs the negative of its input. Minus sign means unary minus if it is immediately preceded by
something requiring an input, or preceded by a space and followed by a nonspace. There is a
difference in binding strength between the two forms: 		

MINUS 3 + 4 means -(3+4)
- 3 + 4 means (-3)+4

Product num1 num2
(Product num1 num2 num3 ...)
 num1 * num2

outputs the product of its inputs. 		

It's a non-commutative primitive (like all binary math functions), so the order or arguments does
matter, if one arg is a list and the other a scalar. 		

Examples: 		

2*3 ;6 ;-)
2*pi ;6.28319 ;-)
[1 2 3]*[4 5 6] ;[4 10 18] ;-)
0+[1 2 3]*[4 5 6] ;32 ;-) ==scalar product!
1*[2 3 4] ;24 ;-) multiply all numbers in a list
[2 3 4]*2 ;[4 6 8] ;-)

138
Arithmetic / Numeric Operations / Product

Product 2 3 ;6 ;-)
Product 2 pi ;6.28319 ;-)
Product [1 2 3] [4 5 6] ;[4 10 18] ;-)
0+Product [1 2 3] [4 5 6] ;32 ;-) ==scalar product!

Quotient num1 num2
(Quotient num)
 num1 / num2

outputs the quotient of its inputs. The quotient of two integers is an integer if and only if the
dividend is a multiple of the divisor. (In other words, QUOTIENT 5 2 is 2.5, not 2, but QUOTIENT
4 2 is 2, not 2.0 -- it does the right thing.) With a single input, QUOTIENT outputs the reciprocal
of the input. 		

Examples: 		

2/3 ;0.666667 ;-)
pi/2 ;1.5708 ;-)
[1 2 3]/[4 5 6] ;[0.25 0.4 0.5] ;-)

Quotient 2 3 ;0.666667 ;-)
Quotient pi 2 ;1.5708 ;-)
Quotient [1 2 3] [4 5 6] ;[0.25 0.4 0.5] ;-)
(Quotient 4) ;0.25 ;-)

Remainder num1 num2

outputs the remainder on dividing " num1 " by " num2 "; both must be integers and the result is an
integer with the same sign as num1 . 		

Examples: 		

139
Arithmetic / Numeric Operations / Remainder

Remainder 4 3 ;1 ;-)
Remainder 5 3 ;2 ;-)
Remainder 6 3 ;0 ;-)
Remainder 7 3 ;1 ;-)
Remainder -7 3 ;-1 ;-)
Modulo -7 3 ;2 ;-)
Remainder [9 10 11][9 9 9] ;[0 1 2] ;-)

Modulo num1 num2
mod num1 num2

outputs the remainder on dividing " num1 " by " num2 "; both must be integers and the result is an
integer with the same sign as num2 . 		

Examples: 		

mod 4 3 ;1 ;-)
mod 5 3 ;2 ;-)
mod 6 3 ;0 ;-)
mod 7 3 ;1 ;-)
mod -7 3 ;2 ;-)
Remainder -7 3 ;-1 ;-)
mod [9 10 11][9 9 9] ;[0 1 2] ;-)

Float num

outputs its input num converted to float numbers. num can be any number or list or array of
numbers. 		

Exampels: 		

140
Arithmetic / Numeric Operations / Float

Float 1 ;1 ;-)
TypeOf 1 ;Int ;-)
TypeOf Float 1 ;Float ;-)
Float [1 2 3] ;[1 2 3] ;-)
Float {1 2 3} ;{1 2 3} ;-)

BigFloat num

outputs its input num converted to BigFloat numbers. num can be any number or list or array of
numbers. 		

Exampel: 		

show 2*radArcCos BigFloat 0		

BigFloatSetPrecision precision

Command to set the internal and print precision of BigFloat numbers to precision . 		

Example: 		

BigFloatSetPrecision 128
show 2*radArcCos BigFloat 0 ;gives Pi

Int num

outputs its input with fractional part removed, i.e., an integer with the same sign as the input, whose
absolute value is the largest integer less than or equal to the absolute value of the input. 		

Note: Inside the computer numbers are represented in two different forms, one for integers and one
for numbers with fractional parts. However, on most computers the largest number that can be
represented in integer format is smaller than the largest integer that can be represented (even with

141
Arithmetic / Numeric Operations / Int

exact precision) in floating-point (fraction) format. The INT operation will always output a number
whose value is mathematically an integer, but if its input is very large the output may not be in
integer format. In that case, operations like REMAINDER that require an integer input will not
accept this number. 		

Examples: 		

Int 1.2 ;1 ;-)
Int -1.2 ;-1 ;-)
Int 1.9 ;1 ;-)
Int -1.9 ;-1 ;-)
Int [1.2 -1.2 1.9 -1.9] ;[1 -1 1 -1] ;-)

Int16 num

outputs a 16 bit integer whose value is num with its fractional part truncated. This is mainly
interesting when writing to binary files or defining a Struct and then writing that to a binary file. 		

Examples: 		

show Int16 32767 ;32767
show Int16 32768 ; int16 doesn't like 32768 as input
show Int16 -32768 ;-32768
show Int16 -32769 ; int16 doesn't like -32769 as input
show Int16 [1.2 -1.2 1.9 -1.9] ;[1 -1 1 -1]
show Int16 {1.2 -1.2 1.9 -1.9} ;{1 -1 1 -1}

Int8 num

outputs a 8 bit integer whose value is num with its fractional part truncated. This is mainly
interesting when writing to binary files or defining a Struct and then writing that to a binary file. 		

Examples: 		

142
Arithmetic / Numeric Operations / Int8

show Int8 127 ;127
show Int8 128 ; int8 doesn't like 128 as input
show Int8 -128 ;-128
show Int8 -129 ; int8 doesn't like -129 as input
show Int8 [1.2 -1.2 1.9 -1.9] ;[1 -1 1 -1]
show Int8 {1.2 -1.2 1.9 -1.9} ;{1 -1 1 -1}

UInt8 num

outputs a 8 bit unsigned integer whose value is num with its fractional part truncated. This is
mainly interesting when writing to binary files or defining a Struct and then writing that to a binary
file. 		

Examples: 		

show UInt8 255 ;255
show UInt8 256 ; uint8 doesn't like 256 as input
show UInt8 0 ;0
show UInt8 -1 ; uint8 doesn't like -1 as input
show UInt8 [1.2 -1.2 1.9 -1.9] ; uint8 doesn't like -1.2 as
input
show UInt8 {1.2 -1.2 1.9 -1.9} ; uint8 doesn't like -1.2 as
input

round num

outputs the nearest integer to the input. 		

Examples: 		

143
Arithmetic / Numeric Operations / round

round 1.2 ;1 ;-)
round -1.2 ;-1 ;-)
round 1.9 ;2 ;-)
round -1.9 ;-2 ;-)
round [1.2 -1.2 1.9 -1.9] ;[1 -1 2 -2] ;-)

truncate num
trunc num

outputs the biggest integer absolutly smaller than num . 		

Examples: 		

trunc 1.2 ;1 ;-)
trunc -1.2 ;-1 ;-)
trunc 1.9 ;1 ;-)
trunc -1.9 ;-1 ;-)
trunc [1.2 -1.2 1.9 -1.9] ;[1 -1 1 -1] ;-)

abs num

outputs the absolute value of num , that is num with its sign made positive. 		

Examples: 		

abs -1 ;1 ;-)
abs -1.2 ;1.2 ;-)
abs [-1 -2.2] ;[1 2.2] ;-)

Signum num

144
Arithmetic / Numeric Operations / Signum

outputs 1 if num is greater zero. outputs -1 if num is below zero, else outputs 0. 		

Examples: 		

Signum 0 ;0 ;-)
Signum 1234 ;1 ;-)
Signum -4321 ;-1 ;-)
Signum pi ;1 ;-)
Signum -pi ;-1 ;-)
Signum 1.2+0i ;1 ;-)
Signum -1.2+0i ;-1 ;-)
Signum 1i ; Signum doesn't like 0+1i as input
Signum (list 1234 -4321 0 1.2 -1.2 pi+0i -pi+0i)
;[1 -1 0 1 -1 1 -1] ;-)

Sqr num

outputs the square of the input. 		

Examples: 		

Sqr 2 ;4 ;-)
Sqr 0.25 ;0.0625 ;-)
Sqr 1i ;-1+0i ;-)
Sqr [2 0.25 1i] ;[4 0.0625 -1+0i] ;-)

Sqrt num

outputs the square root of the input. 		

Examples: 		

145
Arithmetic / Numeric Operations / Sqrt

Sqrt 4 ;2 ;-)
Sqrt 2 ;1.41421 ;-)
Sqrt -1 ;0+1i ;-)
Sqrt [4 2 -1] ;[2 1.41421 0+1i] ;-)

Power num1 num2
 num1 ^ num2

outputs " num1 " to the " num2 " power. If num1 is negative, then num2 must be an integer. 		

Examples: 		

2^0 ;1 ;-)
2^1 ;2 ;-)
2^2 ;4 ;-)
2^3 ;8 ;-)
2^(1/12) ;1.05946 ;-)
4^2 ;16 ;-)
10^300 ;1e+300 ;-)
Power [2 2 2 2 2 4 10] (list 0 1 2 3 1/12 2 300)
;[1 2 4 8 1.05946 16 1e+300] ;-)

exp num

outputs e (2.718281828+) to the input power. 		

Examples: 		

exp 0 ;1 ;-)
exp 1 ;2.71828 ;-)
exp 2 ;7.38906 ;-)
exp 1i*pi ;-1+1.22461e-016i ;-) nearly -1, so nearly correct
exp 1i*2*pi ;1-2.44921e-016i ;-) nearly 1, so nearly correct
exp (list 0 1 2 1i*pi 2i*pi)
;[1 2.71828 7.38906 -1+1.22461e-016i 1-2.44921e-016i] ;-)

146
Arithmetic / Numeric Operations / Log10

Log10 num

outputs the common (decimal) logarithm of the input. 		

Examples: 		

Log10 10 ;1 ;-)
Log10 100 ;2 ;-)
Log10 1000 ;3 ;-)
Log10 1 ;0 ;-)
Log10 1/10 ;-1 ;-)
Log10 (list 1/10 1 10 100 1000) ;[-1 0 1 2 3] ;-)

LN num

outputs the natural logarithm (Logarithmus Naturalis) of the input. 		

Examples: 		

LN exp 1 ;1 ;-)
LN (exp 1)^2 ;2 ;-)
LN (list (exp 1)^-1 1 exp 1 (exp 1)^2) ;[-1 0 1 2] ;-)

Sin degrees

outputs the sine of its input, which is taken in degrees . 		

Examples: 		

147
Arithmetic / Numeric Operations / Sin

Sin 0 ;0 ;-)
Sin 90 ;1 ;-)
Sin 180 ;5.30717e-017 ;-)
Sin 270 ;-1 ;-)
Sin 360 ;0 ;-)
Sin 45 ;0.707107 ;-)
Sin [0 45 90 135 180 225 270 315 360]
;[0 0.707107 1 0.707107 5.30717e-017 -0.707107 -1 -0.707107 0] ;-)
Sin {0 45 90 135 180 225 270 315 360}
;{0 0.707107 1 0.707107 5.30717e-017 -0.707107 -1 -0.707107 0}
;-)

radSin radians

outputs the sine of its input, which is taken in radians . 		

Examples: 		

radSin 0 ;0 ;-)
radSin pi/2 ;1 ;-)
radSin pi ;1.22461e-016 ;-)
radSin 2*pi ;-2.44921e-016 ;-)
radSin (list 0 pi/2 pi 3/2*pi 2*pi)
;[0 1 1.22461e-016 -1 -2.44921e-016] ;-)

Cos degrees

outputs the cosine of its input, which is taken in degrees . 		

Examples: 		

148
Arithmetic / Numeric Operations / Cos

Cos 0 ;1 ;-)
Cos 90 ;2.65358e-017 ;-)
Cos 180 ;-1 ;-)
Cos 270 ;-7.96075e-017 ;-)
Cos 360 ;1 ;-)
Cos [0 45 90 135 180 225 270 315 360]
;[1 0.707107 2.65358e-017 -0.707107 -1 -0.707107 -7.96075e-017
0.707107 1] ;-)

radCos radians

outputs the cosine of its input, which is taken in radians . 		

Examples: 		

radCos 0 ;1 ;-)
radCos pi/2 ;6.12303e-017 ;-)
radCos pi ;-1 ;-)
radCos 2*pi ;1 ;-)
radCos (list 0 pi/2 pi 3/2*pi 2*pi)
;[1 6.12303e-017 -1 -1.83691e-016 1] ;-)

Tan degrees

outputs the tangens of its input, which is taken in degrees . 		

Examples: 		

Tan 0 ;0 ;-)
Tan 45 ;1 ;-)
Tan 60 ;1.73205 ;-)
Tan -45 ;-1 ;-)
Tan [0 45 60] ;[0 1 1.73205] ;-)

149
Arithmetic / Numeric Operations / radTan

radTan radians

outputs the tangens of its input, which is taken in radians . 		

Examples: 		

radTan 0 ;0 ;-)
radTan pi/4 ;1 ;-)
radTan pi/3 ;1.73205 ;-)
radTan (list 0 pi/4 pi/3) ;[0 1 1.73205] ;-)

ArcSin x

outputs the arcus sine of its input. The result is in degrees. 		

Examples: 		

ArcSin 0 ;0 ;-)
ArcSin 1/2 ;30 ;-)
ArcSin (sqrt 3)/2 ;60 ;-)
ArcSin 1 ;90 ;-)
ArcSin -1 ;-90 ;-)
ArcSin (list 0 1/2 (Sqrt 3)/2 1) ;[0 30 60 90] ;-)

radArcSin x

outputs the arcus sine of its input. The result is in radians. 		

Examples: 		

150
Arithmetic / Numeric Operations / radArcSin

radArcSin 0 ;0 ;-)
pi/(radArcSin 1/2) ;6 ;-)
pi/(radArcSin (Sqrt 3)/2) ;3 ;-)
pi/radArcSin 1 ;2 ;-)
as=radArcSin (list 1/2 (Sqrt 3)/2 1)
(rseq pi pi 3)/as ;[6 3 2] ;-)

ArcCos x

outputs the arcus cosine of its input. The result is in degrees. 		

Examples: 		

ArcCos 1 ;0 ;-)
ArcCos (Sqrt 3)/2 ;30 ;-)
ArcCos 1/Sqrt 2 ;45 ;-)
ArcCos 1/2 ;60 ;-)
ArcCos 0 ;90 ;-)
ArcCos (list 1 (Sqrt 3)/2 1/Sqrt 2 1/2 0) ;[0 30 45 60 90] ;-)

radArcCos x

outputs the arcus cosine of its input. The result is in radians. See ArcCos! 		

Examples: 		

radArcCos 1 ;0 ;-)
pi/radArcCos (Sqrt 3)/2 ;6 ;-)
pi/radArcCos 1/Sqrt 2 ;4 ;-)
pi/radArcCos 1/2 ;3 ;-)
pi/radArcCos 0 ;2 ;-)
pi/radArcCos -1 ;1 ;-)
as=radArcCos (list (Sqrt 3)/2 1/Sqrt 2 1/2 0)
(rseq pi pi 4)/as ;[6 4 3 2] ;-)

151
Arithmetic / Numeric Operations / ArcTan

ArcTan x y

outputs the arctangent of y / x , in degrees, of its input, if x is nonzero, or 90 or -90 depending on
the sign of y , if x is zero. 		

Examples: 		

ArcTan 1 0 ;0 ;-)
ArcTan 1 1 ;45 ;-)
ArcTan 1 Sqrt 3 ;60 ;-)
ArcTan 1 1e300 ;90 ;-)
ArcTan -1 1 ;135 ;-)
ArcTan -1 -1 ;-135 ;-)
ArcTan 1 -1 ;-45 ;-)
ArcTan rseq 1 1 5 (list 0 1 Sqrt 3 1e300 -1)
;[0 45 60 90 -45] ;-)

radArcTan x y

outputs the arctangent of y / x , in radians, of its input, if x is nonzero, or pi/2 or -pi/2 depending
on the sign of y , if x is zero. 		

The expression 		

2*(RADARCTAN 0 1)		
can be used to get the value of pi. 		

Examples: 		

radArcTan 1 0 ;0 ;-)
pi/(radArcTan 1 1) ;4 ;-)
pi/(radArcTan 1 Sqrt 3) ;3 ;-)
pi/(radArcTan 1 1e300) ;2 ;-)

152
Arithmetic / Numeric Operations / Faculty

Faculty integer

outputs the faculty of the integer . This primitive is exact if possible. 		

Examples: 		

Faculty 0 ;1 ;-)
Faculty 1 ;1 ;-)
Faculty 2 ;2 ;-)
Faculty 3 ;6 ;-)
Faculty 4 ;24 ;-)
Faculty 5 ;120 ;-)

factorize integer

outputs a list containing the prime factors of the integer . 		

Examples: 		

factorize 12 ;[3 2 2] ;-)
factorize 120 ;[5 3 2 2 2] ;-)
bigFloatSetPrecision 800
show factorize Faculty 333 ;wait a few seconds and watch!

min num1 num2
(min num1 num2 ...)

outputs the minimum of all the number parameters. 		

Examples: 		

153
Arithmetic / Numeric Operations / min

min 1 2 ;1 ;-)
(min 5 2 2.3 5.0 2.9 3.0) ;2 ;-)
(min [1 2 3 4]) ;1 ;-)
(min {4 3 2 1}) ;1 ;-)

max num1 num2
(max num1 num2 ...)

outputs the maximum of all the number parameters. 		

Examples: 		

max 1 2 ;2 ;-)
(max 5 2 2.3 5.0 2.9 3.0) ;5 ;-)
(max [1 2 3 4]) ;4 ;-)
(max {4 3 2 1}) ;4 ;-)

Norm num
(Norm num1 num2 ...)
Norm vectorlistOrArray

outputs the norm of the numbers, meaning sqrt(num1 ^2+ num2 ^2+ ...) 		

Examples: 		

(Norm 3 4) ;5 ;-)
Norm [3 4] ;5 ;-)

maxNorm num
(maxNorm num1 num2 ...)

154
Arithmetic / Numeric Operations / maxNorm

outputs the maximum norm of the numbers, meaning max(num1 , num2 , ...) 		

Examples: 		

(maxNorm 3 4) ;4 ;-)
maxNorm [3 4] ;4 ;-)

iSeq from to

outputs a list of the integers from FROM to TO, inclusive. 		

Examples: 		

iSeq 3 7 ;[3 4 5 6 7] ;-)
iSeq 7 3 ;[7 6 5 4 3] ;-)

rSeq from to count

outputs a list of COUNT equally spaced rational or complex numbers between FROM and TO,
inclusive. rSeq is also useful to generate a list of equal numbers, like in the last of the examples. 		

Examples: 		

rSeq 3 5 9 ;[3 3.25 3.5 3.75 4 4.25 4.5 4.75 5] ;-)
rSeq 3 5 5 ;[3 3.5 4 4.5 5] ;-)
rSeq pi pi 4 ;[3.14159 3.14159 3.14159 3.14159] ;-)

rSeqFloatArray from to count
rSeqFA from to count

outputs a FloatArray of COUNT equally spaced rational or complex numbers between FROM and

155
Arithmetic / Numeric Operations / rSeqFloatArray

TO, inclusive. rSeqFA is also useful to generate a FloatArray of equal numbers, like in the last of
the examples. 		

Examples: 		

rSeqFA 3 5 9 ;[3 3.25 3.5 3.75 4 4.25 4.5 4.75 5] ;-)
rSeqFA 3 5 5 ;[3 3.5 4 4.5 5] ;-)
rSeqFA pi pi 4 ;[3.14159 3.14159 3.14159 3.14159] ;-)

gcd number1 number2

outputs the greatest common divisor of the two input numbers. 		

Examples: 		

gcd 8 12 ;4 ;-)
gcd 10 20 ;10 ;-)

lcm number1 number2			 (library procedure)

outputs the least common multiple of the two input numbers. 		

Example: 		

lcm 8 12
24 ;-)

resize array newsize

outputs an interpolated array of size newsize . 		

156
Arithmetic / Numeric Operations / resize

Examples: 		

resize {1 1} 5 ;{1 1 1 1 1} ;-)
resize {1 2} 5 ;{1 1.25 1.5 1.75 2} ;-)
resize {1 2 3} 5 ;{1 1.5 2 2.5 3} ;-)
resize {1 2 3} 6 ;{1 1.5 2 2.33333 2.66667 3} ;-)

lowPassFilter in weight

outputs a new FloatArray, IntArray or Int16Array, depending on the type of the input, of the low
pass filtered FloatArray, IntArray or Int16Array in . weight is the weighting of the average used
for the computation. The applied simple algorithm is 		

m.(1)= in .(1)
for [n 1 [count in]]
[out.n=(m.n* weight + in .n)/(weight +1)
 m.(n+1)=out.n
]

Example: 		

x=rSeqFA -1 1 1000
y=(sin x*x*20*360)*300
x=x*400
setPC 0
setXY x y
setPC 4
setXY x FloatArray lowPassFilter y 10
cs
setXY x FloatArray lowPassFilter IntArray y 10
cs
setXY x FloatArray lowPassFilter Int16Array y 10

saturateAbove limit in

157
Arithmetic / Numeric Operations / saturateAbove

outputs a new FloatArray, IntArray or Int16Array, depending on the type of the input, of the
saturated FloatArray, IntArray or Int16Array in . Every item of in is checked if it goes above the
limit . If it does, the limit is output. 		

Example: 		

saturateAbove 50 rseqFA 1 100 10
;{1 12 23 34 45 50 50 50 50 50} ;-)

saturateBelow limit in

outputs a new FloatArray, IntArray or Int16Array, depending on the type of the input, of the
saturated FloatArray, IntArray or Int16Array in . Every item of in is checked if it goes above
below limit . If it does, the limit is output. 		

Example: 		

saturateBelow 50 rseqFA 1 100 10
;{50 50 50 50 50 56 67 78 89 100} ;-)

				z cross x y

outputs the cross product of the 3d arrays x and y . 		

Example: 		

cross {1 0 0}{0 1 0} ;{0 0 1} ;-)		

				invertedMatrix invertMatrix inputMatrix

outputs the invertedMatrix of the inputMatrix . If the determinant is zero an error is thrown. There
are internal special cases for d=1x1,2x2,3x3 so then the runtime is optimal. 		

158
Arithmetic / Numeric Operations / invertMatrix

 inputMatrix : array n of array n. The inner arrays are the column vectors. 		

Example: 		

invertMatrix {{1 0 1}{2 1 2}{3 2 1}}
{ {1.5 -1 0.5}
 {-2 1 0}
 {-0.5 1 -0.5}
} ;-)

transposematrix amatrix
transpose amatrix

outputs the transposed amatrix . 		

Example: 		

transpose [[1 2][3 4][5 6]]
 [[1 3 5]
 [2 4 6]
]
 ;-)

MandelIterate z c maxiter

is a nice example for a user-defined primitive. It helps computing the Mandelbrot set faster. Like in:
		

to mandelIterateLogo z c maxiter repeat maxiter [z *= z
 z += c
 if z > 4 [output repcount]
]
output maxiter

159
Arithmetic / Numeric Operations / MandelIterate

Additionally z and c can be of type Array of complex numbers, so one can compute several
pixels at once. For examples see mandel.lg...mandel5.lg! 		

160
Arithmetic / Arithmetic Mutators

Arithmetic Mutators

...change the input data mathematically. For a nice example see pixtest.lg! 		

But be careful: the xCommands are very picky about the argument types, they must be exactly the
same. So if you have a i.e. list of numbers, be sure to have either only Int's or only Float's inside. A
mixture will probably produce an error. 		

Arithmetic Mutators

• xCopy 160
• xAdd 160
• xSub 160
• xMul 161
• xDiv 161
• xMod 161

xCopy var value

assigns value to the variable var without creating a new object, which is faster than =. But this is
a dangerous function, especially with arrays. 		

xAdd var value
 var += value

adds value to the variable var without creating a new number, which is faster than +. 		

Examples: 		

a=int 0
repeat 1000000 [a+=1]
a ;1000000 ;-)

161
Arithmetic / Arithmetic Mutators / xSub

xSub var value
 var -= value

subtracts value from the variable var without creating a new number, which is faster than -. 		

Example: 		

a=int 1000000
repeat 1000000 [a-=1]
a ;0 ;-)

xMul var value
 var *= value

multiplies the variable var by value without creating a new number, which is faster than *. 		

xDiv var value
 var /= value

divides the variable var by value without creating a new number, which is faster than /. 		

xMod var value

changes the variable var to its modulo of value without creating a new number, which is faster
than mod. 		

162
Arithmetic / Arithmetic Predicates

Arithmetic Predicates

...are arithmetic questions with boolean answers. For many examples see check\checkcompare.lg! 		

Arithmetic Predicates

• lessP 162
• greaterP 162
• lessEqualP 163
• greaterEqualP 163
• primeP 164

lessP thing1 thing2
less? thing1 thing2
 thing1 < thing2

outputs TRUE if its first input is strictly less than its second. 		

If the args are numbers they are compared by their numerical value. If they are strings they are
string-compared. if they are lists or arrays, they are elementwise compared. Otherwise the node
pointers are compared. 		

Examples: 		

1 < 2 ;true ;-)
1 < 1 ;false ;-)
"a < "b ;true ;-)
[1 0] < [0 1] ;false ;-)
[1 0] < [1 1] ;true ;-)

greaterP thing1 thing2
greater? thing1 thing2
 thing1 > thing2

outputs TRUE if its first input is strictly greater than its second. 		

163
Arithmetic / Arithmetic Predicates / greaterP

If the args are numbers they are compared by their numerical value. If they are strings they are
string-compared. if they are lists or arrays, they are elementwise compared. Otherwise the node
pointers are compared. 		

Examples: 		

1 > 1 ;false ;-)
2 > 1 ;true ;-)
"b > "a ;true ;-)
[1 1] > [1 0] ;true ;-)

lessEqualP thing1 thing2
lessEqual? thing1 thing2
 thing1 <= thing2

outputs TRUE if its first input is less or equal than its second. 		

If the args are numbers they are compared by their numerical value. If they are strings they are
string-compared. if they are lists or arrays, they are elementwise compared. Otherwise the node
pointers are compared. 		

Examples: 		

1 <= 1 ;true ;-)
1 <= 2 ;true ;-)
1 <= 0 ;false ;-)
"a <= "b ;true ;-)
"a <= "a ;true ;-)
"b <= "a ;false ;-)
[1 0] <= [1 1] ;true ;-)

greaterEqualP thing1 thing2
greaterEqual? thing1 thing2
 thing1 >= thing2

outputs TRUE if its first input is greater or equal than its second. 		

164
Arithmetic / Arithmetic Predicates / greaterEqualP

If the args are numbers they are compared by their numerical value. If they are strings they are
string-compared. if they are lists or arrays, they are elementwise compared. Otherwise the node
pointers are compared. 		

Examples: 		

1>=1 ;true ;-)
2>=1 ;true ;-)
1>=2 ;false ;-)
"a >= "b ;false ;-)
[1 1] >= [1 0] ;true ;-)

primeP integer
prime? integer
isprime integer (library procedure)

outputs true if the integer is a prime number, otherwise false. 		

Examples: 		

prime? 0 ;true ;-)
prime? 1 ;true ;-)
prime? 2 ;true ;-)
prime? 3 ;true ;-)
prime? 4 ;false ;-)
prime? 5 ;true ;-)
prime? 6 ;false ;-)
prime? 7 ;true ;-)
prime? 8 ;false ;-)
prime? 9 ;false ;-)
prime? 431 ;true ;-)
prime? 2^32-5 ;true ;-)

165
Arithmetic / Random Numbers

Random Numbers

...are created using random and rnd. 		

The random number generator can be set to a reproducable sequence using reRandom. 		

Random Numbers

• random 165
• reRandom 165
• rnd 165

random num

outputs a random nonnegative integer less than its input, which must be an integer, or a list or array
of integers. 		

Examples: 		

random 10 ;4 ;-)
random [100 200 300] ;[18 113 208] ;-)
random {100 200 300} ;{78 100 135} ;-)

reRandom
(reRandom seed)

command. Makes the results of RANDOM reproducible. Ordinarily the sequence of random
numbers is different each time Logo is used. If you need the same sequence of pseudo-random
numbers repeatedly, e.g. to debug a program, say RERANDOM before the first invocation of
RANDOM. If you need more than one repeatable sequence, you can give RERANDOM an integer
input; each possible input selects a unique sequence of numbers. 		

166
Arithmetic / Random Numbers / rnd

rnd

outputs a random floating point number in the range of 0 to 1. 		

167
Arithmetic / Rational numbers

Rational numbers

...are implemented as lists of two numbers, the nominator and the denumerator. There's no internal
Logo node type "Ratio" yet. 		

Rational numbers

• ratio 167
• float2ratio 167
• ratio2float 168
• radd 168
• rsub 168
• rmul 168
• rdiv 169

ratio nominator denumerator					 (library procedure)

outputs a rational number as a list of two numbers, nominator and denumerator, shortened. 		

Examples: 		

ratio 20 10 ;2 ;-)
ratio 10 20 ;[1 2] ;-)
ratio 3 4 ;[3 4] ;-)
ratio 12 8 ;[3 2] ;-)

float2ratio number					 (library procedure)

outputs a list of nominator and denumerator equivalent to the floating point number. 		

Examples: 		

168
Arithmetic / Rational numbers / float2ratio

float2ratio 0.25 ;[1 4] ;-)
float2ratio 1.2 ;[6 5] ;-)
float2ratio 3.14 ;[157 50] ;-)

ratio2float rationr					 (library procedure)

outputs a floating point number equivalent to the rational number rationr. 		

Examples: 		

ratio2float [1 10] ;0.1 ;-)
ratio2float [2 3] ;0.666667 ;-)

radd ratio1 ratio2					 (library procedure)

outputs a rational number as a list of two numbers, nominator and denumerator, which is the sum of
the two input rationals. 		

Example: 		

radd [1 2][1 2] ;1 ;-)
radd [1 2][3 4] ; 1/2+3/4=5/4 ;[5 4] ;-)

rsub ratio1 ratio2					 (library procedure)

outputs a rational number as a list of two numbers, nominator and denumerator, which is the
difference of the two input rationals. 		

Example: 		

rsub [1 2][3 4] ; 1/2-3/4=-1/4 ;[-1 4] ;-)		

169
Arithmetic / Rational numbers / rmul

rmul ratio1 ratio2					 (library procedure)

outputs a rational number as a list of two numbers, nominator and denumerator, which is the
product of the two input rationals. 		

Example: 		

rmul [1 2][3 4] ; (1/2)*(3/4)=3/8 ;[3 8] ;-)		

rdiv ratio1 ratio2					 (library procedure)

outputs a rational number as a list of two numbers, nominator and denumerator, which is the
quotient of the two input rationals. 		

Example: 		

rdiv [1 2][3 4] ; (1/2)/(3/4)=2/3 ;[2 3] ;-)		

170
Arithmetic / Print formatting

Print formatting

...is sometimes a convenient way to display numbers. 		

Print formatting

• Form 170
• intForm 170
• setPrintPrecision 171
• hex 171

Form num width precision

outputs a word containing a printable representation of " num ", possibly preceded by spaces (and
therefore not a number for purposes of performing arithmetic operations), with at least " width "
characters, including exactly " precision " digits after the decimal point. (If " precision " is 0 then
there will be no decimal point in the output.) 		

As a debugging feature, (FORM num -1 format) will print the floating point " num " according to
the C printf "format", to allow 		

to hex : num op form : num -1 "|%08X %08X|
end

to allow finding out the exact result of floating point operations. The precise format needed may be
machine-dependent. 		

Examples: 		

Form pi 16 14 ;3.14159265358979 ;-)
Form exp 1 10 8 ;2.71828183 ;-)

intForm num width base

171
Arithmetic / Print formatting / intForm

outputs a word containing ciphers that represent the number in the base base . I.e. if base ==10
then the number will be output decimal, if base ==2 the number will be output binary, if base
==16 the output will be hexadecimal, etc. 		

Negative integers will be converted to unsigned int, so -1 in base ==16 will be FFFFFFFF. 		

Examples: 		

intForm 1234 0 10 ;1234 ;-)
intForm 1234 0 16 ;4D2 ;-)
intForm 1234 0 2 ;10011010010 ;-)
intForm -1 0 16 ;FFFFFFFF ;-)
intForm -2 0 16 ;FFFFFFFE ;-)

setPrintPrecision precision

command to set the precision of printing float and complex numbers. 		

Example: 		

setPrintPrecision 15
pi-(exp 1)*1i
3.14159265358979-2.71828182845905i ;-)

hex number			 (library procedure)

outputs an integer as a hexadecimal number. This is good for fast checking of color values. 		

Examples: 		

hex 16 ;10 ;-)
hex 256 ;100 ;-)
hex 255 ;FF ;-)
hex PC ;FF000000 ;-) (or whatever value PC has)

172
Arithmetic / Bitwise Operations

Bitwise Operations

...are supplied to make bitwise computations like in C. 		

Bitwise Operations

• BitAnd 172
• BitOr 172
• BitXOr 173
• BitNot 173
• aShift 173
• lShift 174

BitAnd num1 num2
(BitAnd num1 num2 num3 ...)

outputs the bitwise AND of its inputs, which must be integers or a list or array of integers. 		

Examples: 		

BitAnd 1 2 ;0 ;-)
BitAnd 3 2 ;2 ;-)
BitAnd [1 2 3][1 1 1] ;[1 0 1] ;-)

BitOr num1 num2
(BitOr num1 num2 num3 ...)

outputs the bitwise OR of its inputs, which must be integers or a list or array of integers. 		

Examples: 		

173
Arithmetic / Bitwise Operations / BitOr

BitOr 1 2 ;3 ;-)
BitOr 3 2 ;3 ;-)
BitOr [1 2 3][0 0 0] ;[1 2 3] ;-)

BitXOr num1 num2
(BitXOr num1 num2 num3 ...)

outputs the bitwise EXCLUSIVE OR of its inputs, which must be integers or a list or array of
integers. 		

Examples: 		

BitXOr 1 1 ;0 ;-)
BitXOr 1 0 ;1 ;-)
BitXOr [1 2 3][1 1 1] ;[0 3 2] ;-)

BitNot num

outputs the bitwise NOT of its input num , which must be an integer, or a list or array of integers. 		

Examples: 		

BitNot 1 ;-2 ;-)
BitNot 0 ;-1 ;-)
BitNot [1 2 3] ;[-2 -3 -4] ;-)
BitNot {1 2 3} ;{-2 -3 -4} ;-)

aShift num1 num2

outputs " num1 " arithmetic-shifted to the left by " num2 " bits. If num2 is negative, the shift is to
the right with sign extension. 		

174
Arithmetic / Bitwise Operations / aShift

Examples: 		

aShift 1 1 ;2 ;-)
aShift 2 -1 ;1 ;-)
aShift -2 -1 ;-1 ;-)
aShift [1 2 3][1 2 3] ;[2 8 24] ;-)

lShift num1 num2

has a bug: right shift with zero fill does not work yet! 		

outputs " num1 " logical-shifted to the left by " num2 " bits. If num2 is negative, the shift is to the
right with zero fill. The inputs must be integers. 		

Examples: 		

lShift 1 1 ;2 ;-)
lShift 2 -1 ;1 ;-)
lShift [1 2 3][1 2 3] ;[2 8 24] ;-)

175
Logical Operations

Logical Operations

Logical Operations

• and 175
• or 175
• and2 176
• or2 176
• not 177

and tf1 tf2
(and tf1 tf2 tf3 ...)

outputs TRUE if all inputs are TRUE, otherwise FALSE. All inputs must be TRUE or FALSE.
(Comparison is case-insensitive regardless of the value of CASEIGNOREDP. That is, "true" or
"True" or "TRUE" are all the same.) 		

Examples: 		

and true false ;false ;-)
and true true ;true ;-)
and false true ;false ;-)
and false false ;false ;-)
(and true true true) ;true ;-)
(and true true false) ;false ;-)

or tf1 tf2
(or tf1 tf2 tf3 ...)

outputs TRUE if any input is TRUE, otherwise FALSE. All inputs must be TRUE or FALSE.
(Comparison is case-insensitive regardless of the value of CASEIGNOREDP. That is, "true" or

176
Logical Operations / or

"True" or "TRUE" are all the same.) 		

Examples: 		

or false false ;false ;-)
or false true ;true ;-)
or true false ;true ;-)
or true true ;true ;-)
(or false false true) ;true ;-)

				tf1 and2 tf2

outputs true if both boolean inputs are true, otherwise false. 		

Note: This is an infix operator with the same functionality as and. 		

Examples: 		

false and2 false ;false ;-)
false and2 true ;false ;-)
true and2 false ;false ;-)
true and2 true ;true ;-)

				tf1 or2 tf2

outputs true if one of the boolean inputs is true, otherwise false. 		

Note: This is an infix operator with the same functionality as or. 		

Examples: 		

177
Logical Operations / or2

false or2 false ;false ;-)
false or2 true ;true ;-)
true or2 false ;true ;-)
true or2 true ;true ;-)
show 1==0 or2 1<0 ;false
show 1==0 or2 1>0 ;true

not tf

outputs TRUE if the input is FALSE, and vice versa. 		

Examples: 		

not false ;true ;-)
not true ;false ;-)

178
Graphics

Graphics

aUCBLogo provides traditional Logo turtle graphics with one or more turtles. Collision detection is
not supported. This is the most hardware-dependent part of Logo; some features may exist on some
machines but not others. Nevertheless, the goal has been to make Logo programs as portable as
possible, rather than to take fullest advantage of the capabilities of each machine. In particular,
Logo attempts to scale the screen so that turtle coordinates [-400 -300] and [400 300] fit on the
graphics window, and so that the aspect ratio is 1:1, although some PC screens have nonstandard
aspect ratios. 		

The center of the graphics window (which may or may not be the entire screen, depending on the
machine used) is turtle location [0 0]. Positive X is to the right; positive Y is up. Headings (angles)
are measured in degrees clockwise from the positive Y axis. (This differs from the common
mathematical convention of measuring angles counterclockwise from the positive X axis.) The
turtle is represented as an isoceles triangle; the actual turtle position is at the midpoint of the base
(the short side). 		

Colors are, of course, hardware-dependent. However, Logo provides partial hardware independence
by interpreting color numbers 0 through 7 uniformly on all computers: 		

0 black 1 blue 2 green 3 cyan
4 red 5 magenta 6 yellow 7 white

Where possible, Logo provides additional user-settable colors; how many are available depends on
the hardware and operating system environment. If at least 16 colors are available, Logo tries to
provide uniform initial settings for the colors 8-15: 		

 8 brown 9 tan 10 forest 11 aqua
12 salmon 13 purple 14 orange 15 grey

Logo begins with a white background and black pen. 		

Graphics

• Color database 179
• Relative Turtle Motion 195

179
Graphics

• Absolute Turtle Motion 200
• Turtle Motion Queries 212
• Turtle and Window Control 218
• Turtle and Window Queries 234
• Multiple Turtles 237
• Pen and Background Control 238
• enable and disable flags 245
• Pen Queries 251
• Drawing Curves 254
• Drawing filled shapes 258
• Lighting 270
• Fog 272
• Pictures 275
• Bitmaps 281
• Direct Graphics 286
• Projection Matrix 294
• Texturing 298
• Shadows 302

Color database

Colors can also set by name, but the color database of wxWidgets is limited to the following list
(RGB8 is like RGB r/255 g/255 b/255), but be aware, there is a second list of even more colors after
the end of the first colors list. The color values of the first color of the list with a given name will be
taken. You can fetch the complete list of available colors using the primitive getColorDatabase. 		

180
Graphics / Color database

"|AQUAMARINE| RGB8 112 219 147
"|BLACK| RGB8 0 0 0
"|BLUE| RGB8 0 0 255
"|BLUE VIOLET| RGB8 159 95 159
"|BROWN| RGB8 165 42 42
"|CADET BLUE| RGB8 95 159 159
"|CORAL| RGB8 255 127 0
"|CORNFLOWER BLUE| RGB8 66 66 111
"|CYAN| RGB8 0 255 255
"|DARK GREY| RGB8 47 47 47
"|DARK GREEN| RGB8 47 79 47
"|DARK OLIVE GREEN| RGB8 79 79 47
"|DARK ORCHID| RGB8 153 50 204
"|DARK SLATE BLUE| RGB8 107 35 142
"|DARK SLATE GREY| RGB8 47 79 79
"|DARK TURQUOISE| RGB8 112 147 219
"|DIM GREY| RGB8 84 84 84
"|FIREBRICK| RGB8 142 35 35
"|FOREST GREEN| RGB8 35 142 35
"|GOLD| RGB8 204 127 50
"|GOLDENROD| RGB8 219 219 112
"|GREY| RGB8 128 128 128
"|GREEN| RGB8 0 255 0
"|GREEN YELLOW| RGB8 147 219 112
"|INDIAN RED| RGB8 79 47 47
"|KHAKI| RGB8 159 159 95
"|LIGHT BLUE| RGB8 191 216 216
"|LIGHT GREY| RGB8 192 192 192
"|LIGHT STEEL BLUE| RGB8 143 143 188
"|LIME GREEN| RGB8 50 204 50
"|LIGHT MAGENTA| RGB8 255 0 255
"|MAGENTA| RGB8 255 0 255
"|MAROON| RGB8 142 35 107

181
Graphics / Color database

"|MEDIUM AQUAMARINE| RGB8 50 204 153
"|MEDIUM GREY| RGB8 100 100 100
"|MEDIUM BLUE| RGB8 50 50 204
"|MEDIUM FOREST GREEN| RGB8 107 142 35
"|MEDIUM GOLDENROD| RGB8 234 234 173
"|MEDIUM ORCHID| RGB8 147 112 219
"|MEDIUM SEA GREEN| RGB8 66 111 66
"|MEDIUM SLATE BLUE| RGB8 127 0 255
"|MEDIUM SPRING GREEN| RGB8 127 255 0
"|MEDIUM TURQUOISE| RGB8 112 219 219
"|MEDIUM VIOLET RED| RGB8 219 112 147
"|MIDNIGHT BLUE| RGB8 47 47 79
"|NAVY| RGB8 35 35 142
"|ORANGE| RGB8 204 50 50
"|ORANGE RED| RGB8 255 0 127
"|ORCHID| RGB8 219 112 219
"|PALE GREEN| RGB8 143 188 143
"|PINK| RGB8 188 143 234
"|PLUM| RGB8 234 173 234
"|PURPLE| RGB8 176 0 255
"|RED| RGB8 255 0 0
"|SALMON| RGB8 111 66 66
"|SEA GREEN| RGB8 35 142 107
"|SIENNA| RGB8 142 107 35
"|SKY BLUE| RGB8 50 153 204
"|SLATE BLUE| RGB8 0 127 255
"|SPRING GREEN| RGB8 0 255 127
"|STEEL BLUE| RGB8 35 107 142
"|TAN| RGB8 219 147 112
"|THISTLE| RGB8 216 191 216
"|TURQUOISE| RGB8 173 234 234
"|VIOLET| RGB8 79 47 79
"|VIOLET RED| RGB8 204 50 153
"|WHEAT| RGB8 216 216 191
"|WHITE| RGB8 255 255 255
"|YELLOW| RGB8 255 255 0
"|YELLOW GREEN| RGB8 153 204 50

Here's a long list of additional colors, which I inserted as farben.h into the wxWidgets library file
gdicmn.cpp, so they are now all available in aUCBLogo. 		

182
Graphics / Color database

"|ALICEBLUE| RGB8 240 248 255
"|ANTIQUEWHITE| RGB8 250 235 215
"|ANTIQUEWHITE1| RGB8 255 239 219
"|ANTIQUEWHITE2| RGB8 238 223 204
"|ANTIQUEWHITE3| RGB8 205 192 176
"|ANTIQUEWHITE4| RGB8 139 131 120
"|AQUAMARINE| RGB8 127 255 212
"|AQUAMARINE1| RGB8 127 255 212
"|AQUAMARINE2| RGB8 118 238 198
"|AQUAMARINE3| RGB8 102 205 170
"|AQUAMARINE4| RGB8 69 139 116
"|AZURE| RGB8 240 255 255
"|AZURE1| RGB8 240 255 255
"|AZURE2| RGB8 224 238 238
"|AZURE3| RGB8 193 205 205
"|AZURE4| RGB8 131 139 139
"|BEIGE| RGB8 245 245 220
"|BISQUE| RGB8 255 228 196
"|BISQUE1| RGB8 255 228 196
"|BISQUE2| RGB8 238 213 183
"|BISQUE3| RGB8 205 183 158
"|BISQUE4| RGB8 139 125 107
"|BLACK| RGB8 0 0 0
"|BLANCHEDALMOND| RGB8 255 235 205
"|BLUE| RGB8 0 0 255
"|BLUE1| RGB8 0 0 255
"|BLUE2| RGB8 0 0 238
"|BLUE3| RGB8 0 0 205
"|BLUE4| RGB8 0 0 139
"|BLUEVIOLET| RGB8 138 43 226
"|BROWN| RGB8 165 42 42
"|BROWN1| RGB8 255 64 64
"|BROWN2| RGB8 238 59 59
"|BROWN3| RGB8 205 51 51
"|BROWN4| RGB8 139 35 35

183
Graphics / Color database

"|BURLYWOOD| RGB8 222 184 135
"|BURLYWOOD1| RGB8 255 211 155
"|BURLYWOOD2| RGB8 238 197 145
"|BURLYWOOD3| RGB8 205 170 125
"|BURLYWOOD4| RGB8 139 115 85
"|CADETBLUE| RGB8 95 158 160
"|CADETBLUE1| RGB8 152 245 255
"|CADETBLUE2| RGB8 142 229 238
"|CADETBLUE3| RGB8 122 197 205
"|CADETBLUE4| RGB8 83 134 139
"|CHARTREUSE| RGB8 127 255 0
"|CHARTREUSE1| RGB8 127 255 0
"|CHARTREUSE2| RGB8 118 238 0
"|CHARTREUSE3| RGB8 102 205 0
"|CHARTREUSE4| RGB8 69 139 0
"|CHOCOLATE| RGB8 210 105 30
"|CHOCOLATE1| RGB8 255 127 36
"|CHOCOLATE2| RGB8 238 118 33
"|CHOCOLATE3| RGB8 205 102 29
"|CHOCOLATE4| RGB8 139 69 19
"|CORAL| RGB8 255 127 80
"|CORAL1| RGB8 255 114 86
"|CORAL2| RGB8 238 106 80
"|CORAL3| RGB8 205 91 69
"|CORAL4| RGB8 139 62 47
"|CORNFLOWERBLUE| RGB8 100 149 237
"|CORNSILK| RGB8 255 248 220
"|CORNSILK1| RGB8 255 248 220
"|CORNSILK2| RGB8 238 232 205
"|CORNSILK3| RGB8 205 200 177
"|CORNSILK4| RGB8 139 136 120
"|CYAN| RGB8 0 255 255
"|CYAN1| RGB8 0 255 255
"|CYAN2| RGB8 0 238 238
"|CYAN3| RGB8 0 205 205
"|CYAN4| RGB8 0 139 139

184
Graphics / Color database

"|DARKBLUE| RGB8 0 0 139
"|DARKCYAN| RGB8 0 139 139
"|DARKGOLDENROD| RGB8 184 134 11
"|DARKGOLDENROD1| RGB8 255 185 15
"|DARKGOLDENROD2| RGB8 238 173 14
"|DARKGOLDENROD3| RGB8 205 149 12
"|DARKGOLDENROD4| RGB8 139 103 11
"|DARKGREEN| RGB8 0 100 0
"|DARKGREY| RGB8 169 169 169
"|DARKKHAKI| RGB8 189 183 107
"|DARKMAGENTA| RGB8 139 0 139
"|DARKOLIVEGREEN| RGB8 85 107 47
"|DARKOLIVEGREEN1| RGB8 202 255 112
"|DARKOLIVEGREEN2| RGB8 188 238 104
"|DARKOLIVEGREEN3| RGB8 162 205 90
"|DARKOLIVEGREEN4| RGB8 110 139 61
"|DARKORANGE| RGB8 255 140 0
"|DARKORANGE1| RGB8 255 127 0
"|DARKORANGE2| RGB8 238 118 0
"|DARKORANGE3| RGB8 205 102 0
"|DARKORANGE4| RGB8 139 69 0
"|DARKORCHID| RGB8 153 50 204
"|DARKORCHID1| RGB8 191 62 255
"|DARKORCHID2| RGB8 178 58 238
"|DARKORCHID3| RGB8 154 50 205
"|DARKORCHID4| RGB8 104 34 139
"|DARKRED| RGB8 139 0 0
"|DARKSALMON| RGB8 233 150 122
"|DARKSEAGREEN| RGB8 143 188 143
"|DARKSEAGREEN1| RGB8 193 255 193
"|DARKSEAGREEN2| RGB8 180 238 180
"|DARKSEAGREEN3| RGB8 155 205 155
"|DARKSEAGREEN4| RGB8 105 139 105
"|DARKSLATEBLUE| RGB8 72 61 139
"|DARKSLATEGRAY| RGB8 47 79 79
"|DARKSLATEGRAY1| RGB8 151 255 255
"|DARKSLATEGRAY2| RGB8 141 238 238
"|DARKSLATEGRAY3| RGB8 121 205 205
"|DARKSLATEGRAY4| RGB8 82 139 139
"|DARKTURQUOISE| RGB8 0 206 209

185
Graphics / Color database

"|DARKVIOLET| RGB8 148 0 211
"|DEEPPINK| RGB8 255 20 147
"|DEEPPINK1| RGB8 255 20 147
"|DEEPPINK2| RGB8 238 18 137
"|DEEPPINK3| RGB8 205 16 118
"|DEEPPINK4| RGB8 139 10 80
"|DEEPSKYBLUE| RGB8 0 191 255
"|DEEPSKYBLUE1| RGB8 0 191 255
"|DEEPSKYBLUE2| RGB8 0 178 238
"|DEEPSKYBLUE3| RGB8 0 154 205
"|DEEPSKYBLUE4| RGB8 0 104 139
"|DIMGREY| RGB8 105 105 105
"|DODGERBLUE| RGB8 30 144 255
"|DODGERBLUE1| RGB8 30 144 255
"|DODGERBLUE2| RGB8 28 134 238
"|DODGERBLUE3| RGB8 24 116 205
"|DODGERBLUE4| RGB8 16 78 139
"|FIREBRICK| RGB8 178 34 34
"|FIREBRICK1| RGB8 255 48 48
"|FIREBRICK2| RGB8 238 44 44
"|FIREBRICK3| RGB8 205 38 38
"|FIREBRICK4| RGB8 139 26 26
"|FLORALWHITE| RGB8 255 250 240
"|FORESTGREEN| RGB8 34 139 34
"|GAINSBORO| RGB8 220 220 220
"|GHOSTWHITE| RGB8 248 248 255
"|GOLD| RGB8 255 215 0
"|GOLD1| RGB8 255 215 0
"|GOLD2| RGB8 238 201 0
"|GOLD3| RGB8 205 173 0
"|GOLD4| RGB8 139 117 0
"|GOLDENROD| RGB8 218 165 32
"|GOLDENROD1| RGB8 255 193 37
"|GOLDENROD2| RGB8 238 180 34
"|GOLDENROD3| RGB8 205 155 29
"|GOLDENROD4| RGB8 139 105 20
"|GRAY81| RGB8 207 207 207
"|GRAY91| RGB8 232 232 232

186
Graphics / Color database

"|GREEN| RGB8 0 255 0
"|GREEN1| RGB8 0 255 0
"|GREEN2| RGB8 0 238 0
"|GREEN3| RGB8 0 205 0
"|GREEN4| RGB8 0 139 0
"|GREENYELLOW| RGB8 173 255 47
"|GREY| RGB8 190 190 190
"|GREY11| RGB8 28 28 28
"|GREY21| RGB8 54 54 54
"|GREY31| RGB8 79 79 79
"|GREY41| RGB8 105 105 105
"|GREY51| RGB8 130 130 130
"|GREY61| RGB8 156 156 156
"|GREY71| RGB8 181 181 181
"|HONEYDEW| RGB8 240 255 240
"|HONEYDEW1| RGB8 240 255 240
"|HONEYDEW2| RGB8 224 238 224
"|HONEYDEW3| RGB8 193 205 193
"|HONEYDEW4| RGB8 131 139 131
"|HOTPINK| RGB8 255 105 180
"|HOTPINK1| RGB8 255 110 180
"|HOTPINK2| RGB8 238 106 167
"|HOTPINK3| RGB8 205 96 144
"|HOTPINK4| RGB8 139 58 98
"|INDIANRED| RGB8 205 92 92
"|INDIANRED1| RGB8 255 106 106
"|INDIANRED2| RGB8 238 99 99
"|INDIANRED3| RGB8 205 85 85
"|INDIANRED4| RGB8 139 58 58
"|IVORY| RGB8 255 255 240
"|IVORY1| RGB8 255 255 240
"|IVORY2| RGB8 238 238 224
"|IVORY3| RGB8 205 205 193
"|IVORY4| RGB8 139 139 131

187
Graphics / Color database

"|KHAKI1| RGB8 255 246 143
"|KHAKI2| RGB8 238 230 133
"|KHAKI3| RGB8 205 198 115
"|KHAKI4| RGB8 139 134 78
"|LAVENDER| RGB8 230 230 250
"|LAVENDERBLUSH| RGB8 255 240 245
"|LAVENDERBLUSH1| RGB8 255 240 245
"|LAVENDERBLUSH2| RGB8 238 224 229
"|LAVENDERBLUSH3| RGB8 205 193 197
"|LAVENDERBLUSH4| RGB8 139 131 134
"|LAWNGREEN| RGB8 124 252 0
"|LEMONCHIFFON| RGB8 255 250 205
"|LEMONCHIFFON1| RGB8 255 250 205
"|LEMONCHIFFON2| RGB8 238 233 191
"|LEMONCHIFFON3| RGB8 205 201 165
"|LEMONCHIFFON4| RGB8 139 137 112
"|LIGHTBLUE| RGB8 173 216 230
"|LIGHTBLUE1| RGB8 191 239 255
"|LIGHTBLUE2| RGB8 178 223 238
"|LIGHTBLUE3| RGB8 154 192 205
"|LIGHTBLUE4| RGB8 104 131 139
"|LIGHTCORAL| RGB8 240 128 128
"|LIGHTCYAN| RGB8 224 255 255
"|LIGHTCYAN1| RGB8 224 255 255
"|LIGHTCYAN2| RGB8 209 238 238
"|LIGHTCYAN3| RGB8 180 205 205
"|LIGHTCYAN4| RGB8 122 139 139
"|LIGHTGOLDENROD| RGB8 238 221 130
"|LIGHTGOLDENROD1| RGB8 255 236 139
"|LIGHTGOLDENROD2| RGB8 238 220 130
"|LIGHTGOLDENROD3| RGB8 205 190 112
"|LIGHTGOLDENROD4| RGB8 139 129 76

188
Graphics / Color database

"|LIGHTGRAY| RGB8 211 211 211
"|LIGHTGREEN| RGB8 144 238 144
"|LIGHTPINK| RGB8 255 182 193
"|LIGHTPINK1| RGB8 255 174 185
"|LIGHTPINK2| RGB8 238 162 173
"|LIGHTPINK3| RGB8 205 140 149
"|LIGHTPINK4| RGB8 139 95 101
"|LIGHTSALMON| RGB8 255 160 122
"|LIGHTSALMON1| RGB8 255 160 122
"|LIGHTSALMON2| RGB8 238 149 114
"|LIGHTSALMON3| RGB8 205 129 98
"|LIGHTSALMON4| RGB8 139 87 66
"|LIGHTSEAGREEN| RGB8 32 178 170
"|LIGHTSKYBLUE| RGB8 135 206 250
"|LIGHTSKYBLUE1| RGB8 176 226 255
"|LIGHTSKYBLUE2| RGB8 164 211 238
"|LIGHTSKYBLUE3| RGB8 141 182 205
"|LIGHTSKYBLUE4| RGB8 96 123 139
"|LIGHTSLATEBLUE| RGB8 132 112 255
"|LIGHTSLATEGRAY| RGB8 119 136 153
"|LIGHTSTEELBLUE| RGB8 176 196 222
"|LIGHTSTEELBLUE1| RGB8 202 225 255
"|LIGHTSTEELBLUE2| RGB8 188 210 238
"|LIGHTSTEELBLUE3| RGB8 162 181 205
"|LIGHTSTEELBLUE4| RGB8 110 123 139
"|LIGHTYELLOW| RGB8 255 255 224
"|LIGHTYELLOW1| RGB8 255 255 224
"|LIGHTYELLOW2| RGB8 238 238 209
"|LIGHTYELLOW3| RGB8 205 205 180
"|LIGHTYELLOW4| RGB8 139 139 122
"|LIMEGREEN| RGB8 50 205 50
"|LINEN| RGB8 250 240 230
"|LTGOLDENRODYELLO| RGB8 250 250 210

189
Graphics / Color database

"|MAGENTA| RGB8 255 0 255
"|MAGENTA1| RGB8 255 0 255
"|MAGENTA2| RGB8 238 0 238
"|MAGENTA3| RGB8 205 0 205
"|MAGENTA4| RGB8 139 0 139
"|MAROON| RGB8 176 48 96
"|MAROON1| RGB8 255 52 179
"|MAROON2| RGB8 238 48 167
"|MAROON3| RGB8 205 41 144
"|MAROON4| RGB8 139 28 98
"|MEDIUMAQUAMARINE| RGB8 102 205 170
"|MEDIUMBLUE| RGB8 0 0 205
"|MEDIUMORCHID| RGB8 186 85 211
"|MEDIUMORCHID1| RGB8 224 102 255
"|MEDIUMORCHID2| RGB8 209 95 238
"|MEDIUMORCHID3| RGB8 180 82 205
"|MEDIUMORCHID4| RGB8 122 55 139
"|MEDIUMPURPLE| RGB8 147 112 219
"|MEDIUMPURPLE1| RGB8 171 130 255
"|MEDIUMPURPLE2| RGB8 159 121 238
"|MEDIUMPURPLE3| RGB8 137 104 205
"|MEDIUMPURPLE4| RGB8 93 71 139
"|MEDIUMSEAGREEN| RGB8 60 179 113
"|MEDIUMSLATEBLUE| RGB8 123 104 238
"|MEDIUMTURQUOISE| RGB8 72 209 204
"|MEDIUMVIOLETRED| RGB8 199 21 133
"|MEDSPRINGGREEN| RGB8 0 250 154
"|MIDNIGHTBLUE| RGB8 25 25 112
"|MINTCREAM| RGB8 245 255 250
"|MISTYROSE| RGB8 255 228 225
"|MISTYROSE1| RGB8 255 228 225
"|MISTYROSE2| RGB8 238 213 210
"|MISTYROSE3| RGB8 205 183 181
"|MISTYROSE4| RGB8 139 125 123
"|MOCCASIN| RGB8 255 228 181

190
Graphics / Color database

"|NAVAJOWHITE| RGB8 255 222 173
"|NAVAJOWHITE1| RGB8 255 222 173
"|NAVAJOWHITE2| RGB8 238 207 161
"|NAVAJOWHITE3| RGB8 205 179 139
"|NAVAJOWHITE4| RGB8 139 121 94
"|NAVYBLUE| RGB8 0 0 128
"|OLDLACE| RGB8 253 245 230
"|OLIVEDRAB| RGB8 107 142 35
"|OLIVEDRAB1| RGB8 192 255 62
"|OLIVEDRAB2| RGB8 179 238 58
"|OLIVEDRAB3| RGB8 154 205 50
"|OLIVEDRAB4| RGB8 105 139 34
"|ORANGE| RGB8 255 165 0
"|ORANGE1| RGB8 255 165 0
"|ORANGE2| RGB8 238 154 0
"|ORANGE3| RGB8 205 133 0
"|ORANGE4| RGB8 139 90 0
"|ORANGERED| RGB8 255 69 0
"|ORANGERED1| RGB8 255 69 0
"|ORANGERED2| RGB8 238 64 0
"|ORANGERED3| RGB8 205 55 0
"|ORANGERED4| RGB8 139 37 0
"|ORCHID| RGB8 218 112 214
"|ORCHID1| RGB8 255 131 250
"|ORCHID2| RGB8 238 122 233
"|ORCHID3| RGB8 205 105 201
"|ORCHID4| RGB8 139 71 137
"|PALEGOLDENROD| RGB8 238 232 170
"|PALEGREEN| RGB8 152 251 152
"|PALEGREEN1| RGB8 154 255 154
"|PALEGREEN2| RGB8 144 238 144
"|PALEGREEN3| RGB8 124 205 124
"|PALEGREEN4| RGB8 84 139 84

191
Graphics / Color database

"|PALETURQUOISE| RGB8 175 238 238
"|PALETURQUOISE1| RGB8 187 255 255
"|PALETURQUOISE2| RGB8 174 238 238
"|PALETURQUOISE3| RGB8 150 205 205
"|PALETURQUOISE4| RGB8 102 139 139
"|PALEVIOLETRED| RGB8 219 112 147
"|PALEVIOLETRED1| RGB8 255 130 171
"|PALEVIOLETRED2| RGB8 238 121 159
"|PALEVIOLETRED3| RGB8 205 104 137
"|PALEVIOLETRED4| RGB8 139 71 93
"|PAPAYAWHIP| RGB8 255 239 213
"|PEACHPUFF| RGB8 255 218 185
"|PEACHPUFF1| RGB8 255 218 185
"|PEACHPUFF2| RGB8 238 203 173
"|PEACHPUFF3| RGB8 205 175 149
"|PEACHPUFF4| RGB8 139 119 101
"|PERU| RGB8 205 133 63
"|PINK| RGB8 255 192 203
"|PINK1| RGB8 255 181 197
"|PINK2| RGB8 238 169 184
"|PINK3| RGB8 205 145 158
"|PINK4| RGB8 139 99 108
"|PLATINUM| RGB8 085 088 090
"|PLUM| RGB8 221 160 221
"|PLUM1| RGB8 255 187 255
"|PLUM2| RGB8 238 174 238
"|PLUM3| RGB8 205 150 205
"|PLUM4| RGB8 139 102 139
"|POWDERBLUE| RGB8 176 224 230
"|PURPLE| RGB8 160 32 240
"|PURPLE1| RGB8 155 48 255
"|PURPLE2| RGB8 145 44 238
"|PURPLE3| RGB8 125 38 205
"|PURPLE4| RGB8 85 26 139
"|RED| RGB8 255 0 0
"|RED1| RGB8 255 0 0
"|RED2| RGB8 238 0 0
"|RED3| RGB8 205 0 0
"|RED4| RGB8 139 0 0

192
Graphics / Color database

"|ROSYBROWN| RGB8 188 143 143
"|ROSYBROWN1| RGB8 255 193 193
"|ROSYBROWN2| RGB8 238 180 180
"|ROSYBROWN3| RGB8 205 155 155
"|ROSYBROWN4| RGB8 139 105 105
"|ROYALBLUE| RGB8 65 105 225
"|ROYALBLUE1| RGB8 72 118 255
"|ROYALBLUE2| RGB8 67 110 238
"|ROYALBLUE3| RGB8 58 95 205
"|ROYALBLUE4| RGB8 39 64 139
"|SADDLEBROWN| RGB8 139 69 19
"|SALMON| RGB8 250 128 114
"|SALMON1| RGB8 255 140 105
"|SALMON2| RGB8 238 130 98
"|SALMON3| RGB8 205 112 84
"|SALMON4| RGB8 139 76 57
"|SANDYBROWN| RGB8 244 164 96
"|SEAGREEN| RGB8 46 139 87
"|SEAGREEN1| RGB8 84 255 159
"|SEAGREEN2| RGB8 78 238 148
"|SEAGREEN3| RGB8 67 205 128
"|SEAGREEN4| RGB8 46 139 87
"|SEASHELL| RGB8 255 245 238
"|SEASHELL1| RGB8 255 245 238
"|SEASHELL2| RGB8 238 229 222
"|SEASHELL3| RGB8 205 197 191
"|SEASHELL4| RGB8 139 134 130
"|SIENNA| RGB8 160 82 45
"|SIENNA1| RGB8 255 130 71
"|SIENNA2| RGB8 238 121 66
"|SIENNA3| RGB8 205 104 57
"|SIENNA4| RGB8 139 71 38
"|SKYBLUE| RGB8 135 206 235
"|SKYBLUE1| RGB8 135 206 255
"|SKYBLUE2| RGB8 126 192 238
"|SKYBLUE3| RGB8 108 166 205
"|SKYBLUE4| RGB8 74 112 139

193
Graphics / Color database

"|SLATEBLUE| RGB8 106 90 205
"|SLATEBLUE1| RGB8 131 111 255
"|SLATEBLUE2| RGB8 122 103 238
"|SLATEBLUE3| RGB8 105 89 205
"|SLATEBLUE4| RGB8 71 60 139
"|SLATEGRAY1| RGB8 198 226 255
"|SLATEGRAY2| RGB8 185 211 238
"|SLATEGRAY3| RGB8 159 182 205
"|SLATEGRAY4| RGB8 108 123 139
"|SLATEGREY| RGB8 112 128 144
"|SNOW| RGB8 255 250 250
"|SNOW1| RGB8 255 250 250
"|SNOW2| RGB8 238 233 233
"|SNOW3| RGB8 205 201 201
"|SNOW4| RGB8 139 137 137
"|SPRINGGREEN| RGB8 0 255 127
"|SPRINGGREEN1| RGB8 0 255 127
"|SPRINGGREEN2| RGB8 0 238 118
"|SPRINGGREEN3| RGB8 0 205 102
"|SPRINGGREEN4| RGB8 0 139 69
"|STEELBLUE| RGB8 70 130 180
"|STEELBLUE1| RGB8 99 184 255
"|STEELBLUE2| RGB8 92 172 238
"|STEELBLUE3| RGB8 79 148 205
"|STEELBLUE4| RGB8 54 100 139
"|TAN| RGB8 210 180 140
"|TAN1| RGB8 255 165 79
"|TAN2| RGB8 238 154 73
"|TAN3| RGB8 205 133 63
"|TAN4| RGB8 139 90 43
"|THISTLE| RGB8 216 191 216
"|THISTLE1| RGB8 255 225 255
"|THISTLE2| RGB8 238 210 238
"|THISTLE3| RGB8 205 181 205
"|THISTLE4| RGB8 139 123 139

194
Graphics / Color database

"|TOMATO| RGB8 255 99 71
"|TOMATO1| RGB8 255 99 71
"|TOMATO2| RGB8 238 92 66
"|TOMATO3| RGB8 205 79 57
"|TOMATO4| RGB8 139 54 38
"|TURQUOISE| RGB8 64 224 208
"|TURQUOISE1| RGB8 0 245 255
"|TURQUOISE2| RGB8 0 229 238
"|TURQUOISE3| RGB8 0 197 205
"|TURQUOISE4| RGB8 0 134 139
"|VIOLET| RGB8 238 130 238
"|VIOLETRED| RGB8 208 32 144
"|VIOLETRED1| RGB8 255 62 150
"|VIOLETRED2| RGB8 238 58 140
"|VIOLETRED3| RGB8 205 50 120
"|VIOLETRED4| RGB8 139 34 82
"|WHEAT| RGB8 245 222 179
"|WHEAT1| RGB8 255 231 186
"|WHEAT2| RGB8 238 216 174
"|WHEAT3| RGB8 205 186 150
"|WHEAT4| RGB8 139 126 102
"|WHITE| RGB8 255 255 255
"|WHITESMOKE| RGB8 245 245 245
"|YELLOW| RGB8 255 255 0
"|YELLOW1| RGB8 255 255 0
"|YELLOW2| RGB8 238 238 0
"|YELLOW3| RGB8 205 205 0
"|YELLOW4| RGB8 139 139 0

195
Graphics / Relative Turtle Motion

Relative Turtle Motion

This section describes the basic set of commands to move the turtle relative to its position,
including commands to change the turtle`s course. 		

When the pen is set to down (with PenDown), then the turtle will draw a straight line along its path.
		

Relative movements are the strength of turtle graphics, especially when you repeat complete figures
and iteratively call them, so you can for example create beautiful fractal drawings with ease. 		

Relative Turtle Motion

• forward 195, fd 195
• back 196, bk 196
• left 196, lt 196
• right 197, rt 197
• leftRoll 197, lr 197
• rightRoll 198, rr 198
• upPitch 198, uP 198
• downPitch 198, down 198

forward dist
fd dist

moves the turtle forward, in the direction that it's facing, by the specified distance (measured in
turtle steps). 		

If penDown?==true then the turtle draws a line in her path. If cylinder lines are enabled then she
draws a cylinder in her path. 		

Examples: 		

repeat 4 [forward 100 right 90]		

196
Graphics / Relative Turtle Motion / forward

cs
fd 100
rt 90
fd 100
lt 60
fd 50

cs
perspective
enableCylinderLines
setpenSize [50 50]
setPenColor 4
fd 100
rt 90
fd 100

back dist
bk dist

moves the turtle backward, i.e., exactly opposite to the direction that it's facing, by the specified
distance. (The heading of the turtle does not change.) 		

Example: 		

pu fd 100 pd
bk 200

left degrees
lt degrees

turns the turtle counterclockwise by the specified angle, measured in degrees (1/360 of a circle). 		

Examples: 		

197
Graphics / Relative Turtle Motion / left

lt 90
fd 100
lt 180
fd 100
lt 45
fd 100
lt 135
fd 100
lt 45
fd 100

right degrees
rt degrees

turns the turtle clockwise by the specified angle, measured in degrees (1/360 of a circle). 		

Examples: 		

rt 90
fd 100
rt 180
fd 100
rt 45
fd 100
rt 135
fd 100
rt 45
fd 100

leftRoll degrees
lr degrees

Rolls the turtle (on to his left side) around the forward vector by the specified angle, measured in
degrees (1/360 of a circle). This command is designed to run in perspective mode. 		

198
Graphics / Relative Turtle Motion / leftRoll

Example: 		

perspective
lr 45
repeat 3 [fd 100 lt 120]

rightRoll angle
rr angle

Rolls the turtle (on to his right side) around the forward vector by the specified angle , measured in
degrees (1/360 of a circle). This command is designed to run in perspective mode. 		

Example: 		

perspective
rr 45
repeat 3 [fd 100 rt 120]

upPitch angle
uP angle

Pitches the turtle nose up around its base by the specified angle , measured in degrees (1/360 of a
circle). This command is designed to run in perspective mode. 		

Example: 		

perspective
up 45
repeat 3 [fd 100 rt 120]

downPitch angle
down angle

199
Graphics / Relative Turtle Motion / downPitch

Pitches the turtles nose downward around its base by the specified angle , measured in degrees
(1/360 of a circle). This command is designed to run in perspective mode. 		

Example: 		

perspective
down 45
repeat 3 [fd 100 rt 120]

200
Graphics / Absolute Turtle Motion

Absolute Turtle Motion

These additional commands enable you to set the turtle`s absolute position and course. 		

Also the home command is quite useful if you've lost your turtle in 3d space ;-) 		

When the pen is set to down (with PenDown), the turtle will draw a straight line from its last
position to its new position. 		

Absolute Turtle Motion

• Home 200
• setX 201
• setY 201
• setZ 201
• setXY 202
• setXYZ 202
• setPos 204
• _setPos 205
• setPosXYZ 205
• _setPosXYZ 206
• setSpherePos 206
• setCylinderPos 207
• setHeading 208, setH 208
• setPitch 208
• setRoll 209
• setOrientation 209
• spinX 210
• spinY 210
• spinZ 210

Home

moves the turtle to the center of the screen. Equivalent to SETPOS [0 0]. 		

Example: 		

201
Graphics / Absolute Turtle Motion / Home

setXY 100 100
Home

setX xcor

Moves the turtle horizontically along the X axis from its current position to a new absolute X
coordinate. 		

The argument is the new X coordinate. 		

Example: 		

setX 100
setY 100
setX 0
setY 0

setY ycor

Moves the turtle vertically along the Y axis from its current position to a new absolute Y
coordinate. 		

The argument is the new Y coordinate. 		

Example: 		

setX 100
setY 100
setX 0
setY 0

setZ zcor

202
Graphics / Absolute Turtle Motion / setZ

Moves the turtle along the Z axis from its current position to a new absolute Z coordinate. 		

The argument is the new Z coordinate. 		

This command is designed to run in perspective mode. 		

Example: 		

perspective
pu setX 100 pd
setZ 100
setY 100
setZ 0
setY 0

setXY xcor ycor

moves the turtle to an absolute screen position. The two inputs are numbers, Lists, Arrays or
FloatArrays representing the X and Y coordinates. 		

Examples: 		

setXY 100 0
setXY 100 100
setXY 0 100
setXY 0 0

x=rSeq -1 1 1000
y=(sin x*x*20*360)*300
x=x*400
setPC 0
setXY x y
setPC 4
setXY x toList lowPassFilter Int16Array y 10

203
Graphics / Absolute Turtle Motion / setXYZ

setXYZ xcor ycor zcor

Moves the turtle to an absolute 3D position. The three arguments are numbers, Lists, Arrays or
FloatArrays representing the X, Y and Z coordinates. 		

This command is designed to run in perspective mode. See also PosXYZ. 		

Example (draw a wireframe cube): 		

perspective
l=100
setXYZ l 0 0
setXYZ l l 0
setXYZ 0 l 0
setXYZ 0 0 0
setXYZ l 0 0
setXYZ l 0 l
setXYZ 0 0 l
setXYZ 0 0 0
setXYZ 0 0 l
setXYZ 0 l l
setXYZ l l l
setXYZ l 0 l
setXYZ l l l
setXYZ l l 0
setXYZ 0 l 0
setXYZ 0 l l
rotatescene

Example (draw some sine waves in 3D): 		

204
Graphics / Absolute Turtle Motion / setXYZ

perspective
for [i 0 360 10] ~
[for [j 0 360] ~
 [setxyz j 200*(sin j)*sin i -i
]
 pu
 setxyz 0 0 -:i
 pd
]
rotatescene

setPos pos

Moves the turtle to an absolute X,Y coordinate. The argument is a list of two numbers, the X and Y
coordinates. See also Pos. 		

Example 1 (draw a square): 		

cs
setpos [0 100]
setpos [100 100]
setpos [100 0]
setpos [0 0]

Example 2 (the most common logo question): 		

make "x 0
make "y 100

then 		

setpos [:x :y]		
will fail, but 		

205
Graphics / Absolute Turtle Motion / setPos

setpos (list :x :y)		
will work. 		

Why?

Because the first case is a list that contains 2 words :x and :y. In the second case a list is BUILT
containing the VALUE of :x and :y. You can see this more clearly by using the show command. 		

show [:x :y] ;[:x :y]
show (list :x :y) ;[0 100]

_setPos pos

moves the turtle to an absolute screen position. The input is a list of two numbers, the X and Y
coordinates. _setPos does, unlike setPos, not change the turtle heading and it does no wrapping, but
it is faster than setPos. 		

Example: 		

_setPos [200 100]		

setPosXYZ pos

Moves the turtle to an absolute X,Y,Z coordinate. The argument is a list of three numbers, the X, Y
and Z coordinates. This command is designed to run in perspective mode. See also PosXYZ. 		

Example (draw a cube): 		

206
Graphics / Absolute Turtle Motion / setPosXYZ

perspective
setposxyz [0 100 0]
setposxyz [100 100 0]
setposxyz [100 0 0]
setposxyz [0 0 0]
setposxyz [0 0 100]
setposxyz [100 0 100]
setposxyz [100 100 100]
setposxyz [0 100 100]
setposxyz [0 0 100]
setposxyz [0 100 100]
setposxyz [0 100 0]
setposxyz [100 100 0]
setposxyz [100 100 100]
setposxyz [100 0 100]
setposxyz [100 0 0]

_setPosXYZ pos

moves the turtle to an absolute screen position. The input is a list of three numbers, the X, Y and Z
coordinates. _setPosXYZ does, unlike setPosXYZ, no wrapping, but it is faster than setPosXYZ. 		

Example: 		

_setPosXYZ [100 200 300]		

setSpherePos r phi theta

moves the turtle to the spherical coordinate position described by radius r , XY-angle phi and the
inclination theta . 		

Example (partial wire sphere in 3D): 		

207
Graphics / Absolute Turtle Motion / setSpherePos

pu
for [s 48 360 24]
[for [t 45 180 16]
 [setSpherePos r s t pd
]
 pu
]
pu
for [t 45 180 16]
[for [s 48 360 24]
 [setSpherePos r s t pd
]
 pu
]

setCylinderPos r phi y

moves the turtle to the cylinder coordinate position described by radius r , XY-angle phi and the
Y position. 		

Example (wire cylinder in 3D): 		

208
Graphics / Absolute Turtle Motion / setCylinderPos

pu
for [s 0 360 24]
[for [h 0 180 20]
 [setCylinderPos 100 s h
 pd
]
 pu
]
pu
for [h 0 180 20]
[for [s 0 360 24]
 [setCylinderPos 100 s h
 pd
]
 pu
]

setHeading angle
setH angle

Turns the turtle to a new absolute heading. 		

The argument is an angle , the heading in degrees clockwise from the positive Y axis. 		

See also HEADING . 		

If you are in perspective mode then, the heading in degrees which is positive from the positive
X-Axis to the positive Y-Axis rotating about the Z-Axis. 		

Example: 		

setheading 45
show heading ;45

setPitch angle

209
Graphics / Absolute Turtle Motion / setPitch

Pitches the turtle to a new absolute pitch. 		

The argument is a angle , the pitch in degrees which is positive from the negative Z-Axis to the
position Y-Axis rotating about the X-Axis. 		

It is important to Understand your ORIENTATION in 3D. 		

This command is designed to run in PERSPECTIVE mode. See also PITCH . 		

Example: 		

perspective
setpitch 45
show pitch ;45

setRoll angle

Rolls the turtle to a new absolute roll. 		

The argument is a angle , the roll in degrees which is positive from the positive X-Axis to the
negative Z-Axis rotating about the Y-Axis. 		

It is important to Understand your ORIENTATION in 3D. 		

This command is designed to run in PERSPECTIVE mode. See also ROLL . 		

Example: 		

perspective
setroll 45
show roll ;45

setOrientation list

210
Graphics / Absolute Turtle Motion / setOrientation

Orients the turtle to a new absolute orientation. 		

The argument is a list , the [roll pitch heading] in degrees. 		

It is important to Understand your Orientation in 3D. 		

This command is designed to run in perspective mode. See also ORIENTATION command. 		

Example: 		

setorientation [180 45 90]
show orientation ;[180 45 90]

spinX angle

rotates the turtle around the x-axis. This command is designed to run in PERSPECTIVE mode. 		

Example: 		

perspective
cs
spinX 30
fd 100

spinY angle

rotates the turtle around the y-axis. This command is designed to run in PERSPECTIVE mode. 		

Example: 		

perspective
cs
spinY 30
fd 100

211
Graphics / Absolute Turtle Motion / spinZ

spinZ angle

rotates the turtle around the z-axis. This command is designed to run in PERSPECTIVE mode. 		

Example: 		

perspective
cs
spinZ 30
fd 100

212
Graphics / Turtle Motion Queries

Turtle Motion Queries

...are asking the turtle questions, getting numbers or lists of numbers as answers. 		

Turtle Motion Queries

• xCor 212
• yCor 212
• zCor 213
• Pos 213
• PosXYZ 213
• Heading 214
• Pitch 214
• Roll 214
• Orientation 215
• towards 215
• towardsXYZ 215
• Distance 216
• DistanceXYZ 216
• Pixel 217
• Scrunch 217

xCor

Outputs a number, the turtle's X coordinate. 		

Example: 		

setx 100
show xcor ;100

yCor

213
Graphics / Turtle Motion Queries / yCor

Outputs a number, the turtle's Y coordinate. 		

Example: 		

sety 100
show ycor ;100

zCor

Outputs a number, the turtle's Z coordinate. 		

This command is designed to run in perspective mode. 		

Example: 		

perspective
setz 100
show zcor ;100

Pos

Outputs the turtle's current position, as a list of two numbers, the X and Y coordinates. 		

Example: 		

setpos [100 100]
show pos ;[100 100]

				turtlePos PosXYZ

Outputs the turtle's current position, as a list of three numbers, the X, Y and Z coordinates. 		

214
Graphics / Turtle Motion Queries / PosXYZ

This command is designed to run in perspective mode. 		

Example: 		

perspective
setposxyz [100 100 50]
show posxyz ;[100 100 50]

				angle Heading

Outputs an angle, the turtle's heading in degrees. 		

Example: 		

setheading 90
show heading ;90

				angle Pitch

Outputs a angle, the turtle's pitch in degrees. 		

It is important to Understand your Orientation in 3D. This command is designed to run in
perspective mode. 		

Example: 		

setpitch 90
show pitch ;90

				angle Roll

215
Graphics / Turtle Motion Queries / Roll

Outputs an angle, the turtle's roll in degrees. 		

It is important to Understand your Orientation in 3D. See also SETROLL. 		

This command is designed to run in perspective mode. 		

Example: 		

setroll 90
show roll ;90

				orientationList Orientation

Outputs a list, the turtle's [roll pitch heading] each in degrees. 		

It is important to Understand your Orientation in 3D. This command is designed to run in
perspective mode. 		

Example: 		

setorientation [180 45 90]
show orientation ;[180 45 90]

				angle towards pos

Outputs an angle, the heading in degrees, at which the turtle should be headed so that it would point
from its current position towards the position pos given as the argument. 		

Example: 		

show towards [100 100] ;45
setheading towards [300 400] fd distance [300 400]

216
Graphics / Turtle Motion Queries / towardsXYZ

				orientationList towardsXYZ pos

Outputs a list, containing [roll pitch heading] at which the turtle should be oriented so that it would
point from its current position to the position pos given as the [x y z] argument. 		

It is important to Understand your Orientation in 3D. 		

This command is designed to run in perspective mode. 		

Example: 		

show towardsxyz [100 100 0] ;[0 0 45]
setorientation towardsxyz [100 100 100]
fd distancexyz [100 100 100]

				dist Distance pos

Outputs a number, the distance the turtle must travel along a straight line to reach the position pos
given as the argument. 		

Example: 		

show distance [0 100] ;100
show distance [300 400] ;500
setheading towards [300 400]
fd distance [300 400]

				dist DistanceXYZ pos

Outputs a number, the distance the turtle must travel along a straight line to reach the xyz position
given as the argument. 		

This command is designed to run in perspective mode. 		

217
Graphics / Turtle Motion Queries / DistanceXYZ

Example: 		

show towardsxyz [0 100 0] ;100
show towardsxyz [100 100 100] ;173.205080756888
setorientation towardsxyz [100 100 100]
fd distancexyz [100 100 100]

				color Pixel

outputs the color of the pixel under the turtle. 		

Example: 		

setPixel [0 0] RGB 1 0 0
reRGBA Pixel ;[1 0 0 1] ;-)

Scrunch

outputs a list containing two numbers, the X and Y scrunch factors, as used by SETSCRUNCH.
(But note that SETSCRUNCH takes two numbers as inputs, not one list of numbers.) 		

218
Graphics / Turtle and Window Control

Turtle and Window Control

Here are miscellanous commands and a few operations to control the graph window and the turtle. 		

Turtle and Window Control

• showTurtle 219, sT 219
• hideTurtle 219, hT 219
• clean 220
• clearScreen 220, cS 220
• wrap 220
• Window 221
• Fence 221
• perspective 221
• unperspective 222
• setEye 222
• fill 223
• Label 223
• LabelSize 224
• setLabelSize 224
• LabelFont 224
• setLabelFont 225
• LabelWeight 225
• setLabelWeight 225
• LabelAlign 226
• setLabelAlign 226
• TextScreen 226, TS 226
• fullScreen 227, fS 227
• splitScreen 227, sS 227
• setVarsSplitter 227
• setCallsSplitter 227
• allFullScreen 228
• notFullScreen 228
• setScrunch 228
• refresh 229
• noRefresh 229
• singleBuffer 229
• doubleBuffer 229
• refreshP 229

219
Graphics / Turtle and Window Control

• redraw 230
• setUpdateGraph 230
• updateGraph 230
• updateVars 231
• updateVarsOnStep 231
• Calls 231
• updateCalls 231
• dispatchMessages 231
• scroll 232
• scrollCalibrate 232, scrollCal 232
• axes 232
• rotatescene 233
• setScreenRange 233

showTurtle
sT

makes the turtle visible. 		

Example: 		

ht
tree
st

hideTurtle
hT

makes the turtle invisible. It's a good idea to do this while you're in the middle of a complicated
drawing, because hiding the turtle speeds up the drawing substantially. 		

Example: 		

220
Graphics / Turtle and Window Control / hideTurtle

ht
tree
st

clean

erases all drawings off the graphics window. The turtle's state (position, heading, pen mode, etc.) is
not changed. 		

Example: 		

setXY 200 100
seth 30
clean

clearScreen
cS

erases the graphics window and sends the turtle to its initial position and heading. Like HOME and
CLEAN together. 		

wrap

tells the turtle to enter wrap mode: From now on, if the turtle is asked to move past the boundary of
the graphics window, it will "wrap around" and reappear at the opposite edge of the window. The
top edge wraps to the bottom edge, while the left edge wraps to the right edge. (So the window is
topologically equivalent to a torus.) This is the turtle's initial mode. Compare WINDOW and
FENCE. 		

Example: 		

221
Graphics / Turtle and Window Control / wrap

Window
fd 400
wrap
cs
fd 400

Window

tells the turtle to enter window mode: From now on, if the turtle is asked to move past the boundary
of the graphics window, it will move offscreen. The visible graphics window is considered as just
part of an infinite graphics plane; the turtle can be anywhere on the plane. (If you lose the turtle,
HOME will bring it back to the center of the window.) Compare WRAP and FENCE. 		

Example: 		

Window
fd 400
wrap
cs
fd 400

Fence

tells the turtle to enter fence mode: From now on, if the turtle is asked to move past the boundary
of the graphics window, it will move as far as it can and then stop at the edge with an "out of
bounds" error message. Compare WRAP and WINDOW. 		

Example: 		

Fence
fd 400 ; turtle out of bounds

222
Graphics / Turtle and Window Control / perspective

perspective

command that prepares the screen for 3D commands and internally calls setEye {400 400 600}{0 0
0}{0 1 0}. 		

Example: 		

perspective
axes

unperspective

command that prepares the screen for 2D commands after perspective mode. 		

Example: 		

perspective
axes
wait 1000
unperspecitve
axes

setEye eye center upvector

command that sets the 3D projection parameters to new values. All parameters must be 3D arrays,
like {400 400 600}. 		

 eye : the position of the observer eye relative to {0 0 0}, defaults to {400 400 600} in perspective
mode. 		

 center : the position of the center of the screen, defaults to {0 0 0}. 		

 upvector : the direction which is up on the screen, defaults to {0 1 0}, so Y will be upwards, in

223
Graphics / Turtle and Window Control / setEye

perspective mode. 		

Example: 		

cS
perspective
axes
setEye {100 400 600}{0 0 0}{0 1 0}
redraw

fill
(fill "true)

fills in a region of the graphics window containing the turtle and bounded by lines that have been
drawn earlier. This is not portable; it doesn't work for all machines, and may not work exactly the
same way on different machines. 		

The command (fill "true) fills the area around the turtle defined by the color specified by penColor.
Filling continues outward in all directions as long as the color is encountered. This style is useful
for filling areas with multicolored boundaries. 		

Example: 		

disLS
box
rt 45
pu fd 10
fill

Label text

takes a word or list as input, and prints the input on the graphics window, starting at the turtle's
position. A word will always be in lowercase while the case of a list of words will be preserved. 		

224
Graphics / Turtle and Window Control / Label

Example: 		

label "Hallo ; will print "hallo" in the graph window
label [Hallo World] ; will print "Hallo World"

				size LabelSize text
				fontSize (LabelSize)

With one argument, this command will output the size of the given text . The input, which may be a
word or a list is the same as what you would give to Label. You can use this information to build
other forms of Label. Other forms might be CENTERLABEL or VERTICALLABEL. You can also
use this information to "prepare" a site for text (i.e. frame it or set a background). 		

size:(List) List of 2 integers [width height] of the text in the current font. 		

 text :(Thing) Any thing you wish to label with. 		

Example: 		

show labelsize "Hallo ;[44 24]		
Without an argument, LabelSize outputs the current label font size. 		

Example: 		

show (LabelSize) ;[20 20]		

setLabelSize xylist

sets the size of the next text printed by Label. xylist is a list of width and height of a single char. 		

Example: 		

setLabelSize [10 20] ;set label size to default size		

225
Graphics / Turtle and Window Control / LabelFont

				fontFaceName LabelFont

outputs the current label font name. 		

Example: 		

LabelFont ;Times ;-)		

setLabelFont fontFaceName

sets the default font for label to the word fontFaceName . 		

Examples: 		

setLabelFont "Times
label "hallo
fd 100
setLabelFont "|Courier New|
label "world

				weight LabelWeight

outputs the currently set label weight. 		

Example: 		

LabelWeight ;400 ;-)		

setLabelWeight weight

does not work yet. 		

226
Graphics / Turtle and Window Control / setLabelWeight

sets the weight of the label font. weight 400 is normal, 1000 is fat. 		

Example: 		

setLabelWeight 800
label "hallo

				alignmentlist LabelAlign

outputs the currently set label alignment as a list of two integers [xalign yalign]. 		

There are three possible values for xalign and yalign: -1, 0, 1. 		

-1 stands for right amd top, 0 centers the text, 1 aligns left and bottom. 1 is default. 		

Example: 		

LabelAlign ;[0 0] ;-) x=center, y=center		

setLabelAlign xalign yalign

sets the alignment of the label font. There are three possible values for xalign and yalign : -1, 0, 1.
		

-1 stands for right amd top, 0 centers the text, 1 aligns left and bottom. 1 is default. 		

Example: 		

setLabelAlign -1 1 ;right-bottom
label "hallo

TextScreen
TS

227
Graphics / Turtle and Window Control / TextScreen

rearranges the size and position of windows to maximize the space available in the text window (the
window used for interaction with Logo). See also SPLITSCREEN and FULLSCREEN. 		

fullScreen
fS

rearranges the size and position of windows to maximize the space available in the graphics
window. See also SPLITSCREEN and TEXTSCREEN. 		

Since there must be a text window to allow printing, Logo automatically switches from fullscreen to
splitscreen whenever anything is printed. 		

splitScreen
sS
(splitScreen ratio)
(ss ratio)

rearranges the sizes and positions of windows to allow some room for text interaction while also
keeping the graphics window visible. The optional ratio must be a number in the range 0..1. 0
means the graph window is minimized, the text window is maximized. 1 means the opposite. 0.5
means they are equally tiled. See also TEXTSCREEN and FULLSCREEN. 		

setVarsSplitter ratio

sets the window splitter between the text console and the Vars and Calls windows to the ratio . The
 ratio must be a number in the range 0..1. 		

Example: 		

setVarsSplitter 0.6		

228
Graphics / Turtle and Window Control / setCallsSplitter

setCallsSplitter ratio

sets the window splitter between the Vars window and the Calls windows to the ratio . The ratio
must be a number in the range 0..1. 		

Example: 		

setCallsSplitter 0.6		

allFullScreen

maximizes the aUCBLogo window to fill the screen completely. The menu is also not shown any
more. To leave this mode run the command notFullScreen. 		

notFullScreen

leaves full screen mode entered previously by allFullScreen. 		

setScrunch xscale yscale

adjusts the aspect ratio and scaling of the graphics display. After this command is used, all further
turtle motion will be adjusted by multiplying the horizontal and vertical extent of the motion by the
two numbers given as inputs. 		

For example, after the instruction
 setScrunch 2 1
motion at a heading of 45 degrees will move twice as far horizontally as vertically. If your squares
don't come out square, try this. (Alternatively, you can deliberately misadjust the aspect ratio to
draw an ellipse.) 		

For Unix machines and Macintoshes, both scale factors are initially 1. For DOS machines, the scale

229
Graphics / Turtle and Window Control / setScrunch

factors are initially set according to what the hardware claims the aspect ratio is, but the hardware
sometimes lies. The values set by SETSCRUNCH are remembered in a file (called
SCRUNCH.DAT) and are automatically put into effect when a Logo session begins. 		

refresh

tells Logo to record the turtle's motions so that they can be	reconstructed with another setEye
position. 		

noRefresh

tells Logo not to record the turtle's motions. This will make drawing faster and less memory
requiering, but prevents redraw with another setEye setting. 		

singleBuffer

sets the drawing to single buffered mode. On some graphics cards the SwapBuffers() function
behaves strangly, this is for those bad cases. 		

After calling singleBuffer all the drawing goes directly to the graph window. 		

Several demos might flicker in this mode. 		

doubleBuffer

sets the drawing to double buffered. This may be neccessary when you have switched to
singelBuffer first and now you want to switch back to default. 		

230
Graphics / Turtle and Window Control / refreshP

refreshP
refresh?

outputs if Logo is recording the graphics commands. 		

redraw

does redraw the graphics saved in the graphics recorder. 		

setUpdateGraph isUpdating

sets the auto update of the graphic window to either true or false. If false, then the turtle draws only
hidden on the memory screen, which is good for animations. 		

Example: 		

to rotateTree
 ht
 setUpdateGraph false
 forever
 [clean
 rt 1
 tree 6 100
 updategraph
 if key? [stop]
]
end

updateGraph

231
Graphics / Turtle and Window Control / updateGraph

immediately updates the graphics screen from the memory screen. This is good for animations in
conjunction with setUpdateGraph false. 		

updateVars

updates the Vars window showing all variables and their values. This is good for debugging. 		

updateVarsOnStep yesno

sets the calling of updateVars during stepping to true or false. This might improve the performance
a lot if you have many variables. 		

Example: 		

updateVarsOnStep false		

Calls

outputs a list containing all nested user procedure calls with their parameters. 		

updateCalls

updates the Calls window showing all nested calls and their parameters. It's good to see the Calls
when being in a big program and wanting to know where a stack overflow occures. 		

dispatchMessages

232
Graphics / Turtle and Window Control / dispatchMessages

dispatches all pending windows messages, i.e. mouse moves, mouseclicks, etc. This is necessary for
instantaneous reactions on user input, esp. mouse actions. See example bounce2.lg! 		

Example: 		

forever
[dispatchMessages
 m=MousePos
 updateVars
]

scroll sizelist displacementlist

command which scrolls the graph window of size sizelist right and down at the turtle by
displacementlist pixels. 		

Example: scrolltest.lg and scrolltest2.lg 		

				realDispacementList scrollCalibrate displacementlist
				realDispacementList scrollCal displacementlist

outputs the displacement which scroll will scroll by displacement pixels. This is neccessary because
logo coordinates are scaled to window coordinates and scroll can only scroll by whole pixels, which
will probably be no integer in logo coordinates. 		

So if you want to scroll the screen i.e. by 2 pixels in x direction then you will need to do the
following: 		

cs rbox fill
_setPos [-400 299]
scc=scrollCal [2 0]
scroll [800 600] scc

233
Graphics / Turtle and Window Control / axes

axes					(library procedure)

command drawing axes as to have a coordinate system. This is very useful in perspective mode. 		

rotatescene					(library procedure)

command which calls setEye and redraw in a loop with user interaction to rotate a drawn 3D scene.
This is shown off in many examples. 		

setScreenRange

When you use Graph windows with a defined shape then setScreenRange might be useful to get
away from the default [800,600] logical pixels. 		

234
Graphics / Turtle and Window Queries

Turtle and Window Queries

...are questions you can ask the turtle and the mouse. 		

Turtle and Window Queries

• shownP 234
• MousePos 234
• TextMousePos 234
• TextMouseX 235
• TextMouseY 235
• MouseButtons 235

shownP
shown?

outputs TRUE if the turtle is shown (visible), FALSE if the turtle is hidden. See SHOWTURTLE
and HIDETURTLE. 		

				poslist MousePos

outputs the position of the mouse in the graph window as a list of three floating point numbers. 		

				poslist TextMousePos

outputs the position of the mouse in the console window as a list of two integers, meaning the x and
y mouse location in characters. 		

Example: 		

235
Graphics / Turtle and Window Queries / TextMousePos

forever [
 textpos=TextMousePos
 dispatchMessages
 updateVars
]
;look at the vars window while moving the mouse in the console!

				x TextMouseX

outputs the column coordinate of the mouse in the console window, in units of characters. 		

Example: 		

forever [
 textxpos=TextMouseX
 dispatchMessages
 updateVars
]
;look at the vars window while moving the mouse in the console!

				y TextMouseY

outputs the line coordinate of the mouse in the console window, in units of characters. 		

Example: 		

forever [
 textypos=TextMouseY
 dispatchMessages
 updateVars
]
;look at the vars window while moving the mouse in the console!

236
Graphics / Turtle and Window Queries / MouseButtons

				buttons MouseButtons

outputs the mouse buttons value. 1=left button, 2=right button, 3=left&right button. 		

237
Graphics / Multiple Turtles

Multiple Turtles

Now multiple turtles can be used. But unlike in MSWLogo (where there is an internal array of
turtles) those turtles are able to be assigned to variables. 		

Multiple Turtles

• Turtle 237
• newTurtle 237
• setTurtle 237

				activeTurtle Turtle

outputs the activeTurtle for usage with a variable assignment. 		

Example: 		

oldt=turtle
setTurtle newTurtle
fd 100
setTurtle oldt

				aNewTurtle newTurtle

outputs a new Turtle which can be used with setTurtle or it can be stored in a variable. 		

setTurtle aTurtle

command which sets the active turtle to aTurtle . aTurtle can be obtained from turtle or newTurtle
or indirectly from a variable. See also turtlestest.lg! 		

238
Graphics / Pen and Background Control

Pen and Background Control

The turtle carries a pen that can draw pictures. At any time the pen can be UP (in which case
moving the turtle does not change what's on the graphics screen) or DOWN (in which case the turtle
leaves a trace). If the pen is down, it can operate in one of three modes: PAINT (so that it draws
lines when the turtle moves), ERASE (so that it erases any lines that might have been drawn on or
through that path earlier), or REVERSE (so that it inverts the status of each point along the turtle's
path). 		

Pen and Background Control

• PenDown 238, PD 238
• PenUp 238, PU 238
• PenPaint 239, PPt 239
• PenErase 239, PE 239
• PenReverse 239, PX 239
• setPenColor 239, setPC 239
• setFloodColor 240, setFC 240
• setMaterialAmbient 241
• setMaterialDiffuse 241
• setMaterialSpecular 241
• setMaterialEmission 241
• setMaterialShininess 241
• setScreenColor 242, setSC 242
• setPenSize 242, setPS 242
• setPenPattern 242
• setpen 243
• setDepthFunc 243

PenDown
PD

sets the pen's position to DOWN, without changing its mode. 		

PenUp

239
Graphics / Pen and Background Control / PenUp

PU

sets the pen's position to UP, without changing its mode. 		

PenPaint
PPt

sets the pen's position to DOWN and mode to PAINT. 		

PenErase
PE

sets the pen's position to DOWN and mode to ERASE. 		

PenReverse
PX

sets the pen's position to DOWN and mode to REVERSE. (This may interact in
hardware-dependent ways with use of color.) 		

setPenColor colornumber
setPC colornumber
setPenColor rgblist
setPC rgblist
setPenColor colorname
setPC colorname

sets the pen color to the given number, which must be a integer, or a rgblist (consisting of three

240
Graphics / Pen and Background Control / setPenColor

items, red, green, and blue, which must be in the range 0..1), or must be one of the color names in
the wxWidgets color database. Color 0 is always black; color 7 is always white. Other color
numbers may or may not be consistent between machines, but colors by name should be platform
independent - as is wxWidgets. 		

Examples: 		

disls ;is neccessary to make independent color drawings
setpc 1
box
setpc 2
box
setpc 3
box
setpc 4
box
setpc 7
box
setpc rgb 1 0 0
box
setpc rgb 0 1 0 box
setpc rgb 0 0 1 box
setpc rgba 0 0 0 .2 box
setpc rgba 0 0 0 .2 box
setpc rgba 0 0 0 .2 box
setpc rgba 0 0 0 .2 box
setpc rgba 0 0 0 .2 box
setpc [0 0.5 0] box
setpc "red box
setpc "yellow box

setFloodColor acolor
setFC acolor

sets the flood color to the given acolor , which must be a integer, or a rgblist (consisting of three
items, red, green, and blue, which must be in the range 0..1), or must be one of the color names in
the wxWidgets color database. Color 0 is always black; color 7 is always white. Other colors may

241
Graphics / Pen and Background Control / setFloodColor

or may not be consistent between machines. See also setPC. 		

Example: 		

setfc rgb 1 0 1
fbox

setMaterialAmbient acolor

sets the material ambient color to acolor . For allowed things in acolor see setPC! 		

setMaterialDiffuse acolor

sets the material diffuse color to acolor . For allowed things in acolor see setPC! 		

setMaterialSpecular acolor

sets the material specular color to acolor . For allowed things in acolor see setPC! 		

setMaterialEmission acolor

sets the material emission color to acolor . For allowed things in acolor see setPC! 		

setMaterialShininess shininess

242
Graphics / Pen and Background Control / setMaterialShininess

sets the material shininess , a number between 0 and about 100. 		

Example: 		

perspective
setPC "red
setMaterialShininess 10
Sphere 200

setScreenColor acolor
setSC acolor

set the screen background color. See also setPC and the color database. 		

setPenSize size
setPS size

sets the pen size to the size list of two numbers. The second number is ignored at the moment. 		

In perspective mode, if cylinderLines are enabled, the first list entry is the radius of the cylinders. 		

Example: 		

setPenSize [3.5 4]
fd 100
cs
perspective
setpc 4
enCL
setPenSize [50 50]
fd 100

243
Graphics / Pen and Background Control / setPenPattern

setPenPattern pattern

Does not work yet! 		

setpen list						 (library procedure)

sets the pen's position, mode, and hardware-dependent characteristics according to the information
in the input list, which should be taken from an earlier invocation of PEN. 		

setDepthFunc num

sets the depth comparsion function of OpenGL. This can be useful when you want to overwrite
drawn graphics, which might be nearer to the eye. See bounce3.lg for an example! 		

0=GL_NEVER Never passes. 		

1=GL_LESS Passes if the incoming z value is less than the stored z value. This is the default value.
		

2=GL_EQUAL Passes if the incoming z value is equal to the stored z value. 		

3=GL_LEQUAL Passes if the incoming z value is less than or equal to the stored z value. 		

4=GL_GREATER Passes if the incoming z value is greater than the stored z value. 		

5=GL_NOTEQUAL Passes if the incoming z value is not equal to the stored z value. 		

6=GL_GEQUAL Passes if the incoming z value is greater than or equal to the stored z value. 		

7=GL_ALWAYS Always passes. 		

Especially 3 and 7 are most useful. 		

Examples: 		

244
Graphics / Pen and Background Control / setDepthFunc

perspective
cs
setPC "red
setDepthFunc 7
Sphere 100
setDepthFunc 3
Sphere 100

245
Graphics / enable and disable flags

enable and disable flags

enable and disable flags

• enableLineSmooth 245, enLS 245
• disableLineSmooth 245, disLS 245
• enablePolySmooth 246, enPS 246
• disablePolySmooth 246, disPS 246
• enableRoundLineEnds 246, enRLE 246
• disableRoundLineEnds 247, disRLE 247
• enableCylinderLines 247, enCL 247
• disableCylinderLines 248, disCL 248
• enableDepthTest 248, enDT 248
• disableDepthTest 248, disDT 248
• enableLighting 248
• disableLighting 249
• enableDither 249
• disableDither 249
• enablePointSmooth 249
• disablePointSmooth 249
• enableFog 249
• disableFog 250

enableLineSmooth
enLS

enables antialiasing of lines. 		

Example: 		

enLS
circle 300

246
Graphics / enable and disable flags / disableLineSmooth

disableLineSmooth
disLS

disables antialiasing of lines. 		

Example: 		

disLS
circle 300

enablePolySmooth
enPS

enables antialiasing of polygons. 		

Be careful: This can lower the drawing speed by a large amount! 		

Example: 		

enPS
fillCircle 300

disablePolySmooth
disPS

disables antialiasing of polygons. 		

Example: 		

disPS
fillCircle 300

247
Graphics / enable and disable flags / enableRoundLineEnds

enableRoundLineEnds
enRLE

enables drawing of round line ends at every line ending. 		

This can lower the drawing speed, esp. in 3D, because then the line ends are spheres! But it's very
nice! 		

Example: 		

enRLE
setPS [50 50]
fd 100

disableRoundLineEnds
disRLE

disables drawing of round line ends at every line ending. 		

Example: 		

disRLE
setPS [50 50]
fd 100

enableCylinderLines
enCL

enables drawing of automatic cylinder lines when drawing with the turtle. 		

This command is designed to run in perspective mode. 		

Example: 		

248
Graphics / enable and disable flags / enableCylinderLines

perspective
enCL
setps [50 50]
setpc 4
fd 100
rt 90
fd 100

disableCylinderLines
disCL

disables drawing of automatic cylinder lines when drawing with the turtle. Instead flat lines are
drawn. 		

enableDepthTest
enDT

enables OpenGL's depth test of graphics. perspective automatically enables depthtest. 		

disableDepthTest
disDT

disables OpenGL's depth test of graphics. perspective automatically enables depthtest. 		

Example: 		

perspective
clockwork ;this looks very unpretty
disDT
clockwork ;now you should see the difference

249
Graphics / enable and disable flags / enableLighting

enableLighting

enables the OpenGL lighting. It is enabled by default after invoking perspective. 		

disableLighting

disables OpenGL's lighting. This may sometimes work better with alpha blending (transparency). 		

enableDither

enables OpenGL's dithering of colors. This might improve the quality of graphics on displays
having only 8 bit or 16 bit colors, but probably slows down the rendering. 		

disableDither

disables OpenGL's dithering. This is the default. 		

enablePointSmooth

enables OpenGL's point smoothing. This is nice if you want to have antialiased points, which
flicker less on moving. 		

disablePointSmooth

disables OpenGL's point smoothing. This is the default. 		

250
Graphics / enable and disable flags / enableFog

enableFog

enables OpenGL's fog effect. This is especially useful if you draw lots of pixels, because they aren't
lighted and depth might be hard to see. With fog this can be overcome, as used in IFS3D.lg. 		

disableFog

disables OpenGL's fog effect. This is the default. 		

251
Graphics / Pen Queries

Pen Queries

...ask teh pen questions on its properties. 		

Pen Queries

• PenDownP 251
• PenMode 251
• PenColor 251, PC 251
• FloodColor 252, FC 252
• Palette 252
• PenSize 252, PenPattern 252
• pen 252
• ScreenColor 253, SC 253

PenDownP
PenDown?

outputs TRUE if the pen is down, FALSE if it's up. 		

PenMode

outputs one of the words PAINT, ERASE, or REVERSE according to the current pen mode. 		

PenColor
PC

outputs a color number, a nonnegative integer that is associated with a particular color by the
hardware and operating system. 		

Examples: 		

252
Graphics / Pen Queries / PenColor

setpc 0
pc ;-16777216 ;-)
hex pc ;FF000000 ;-)
reRGBA pc ;[0 0 0 1] ;-)
setpc 4
pc ;-16776961 ;-)
hex pc ;FF0000FF ;-)
reRGBA pc ;[1 0 0 1] ;-)

FloodColor
FC

outputs the flood fill color number, a nonnegative integer that is associated with a particular color
by the hardware and operating system. This color is used for filling shapes. 		

The color ca be used like the ones output by PC. 		

Palette colornumber

is not yet implemented! 		

outputs a list of three integers, each in the range 0-65535, representing the amount of red, green,
and blue in the color associated with the given number. 		

PenSize
PenPattern

output hardware-specific pen information. 		

253
Graphics / Pen Queries / pen

pen							(library procedure)

outputs a list containing the pen's position, mode, and hardware-specific characteristics, for use by
SETPEN. 		

ScreenColor
SC

outputs the graphics screen background color. 		

254
Graphics / Drawing Curves

Drawing Curves

Here are some commands to draw curves. The most useful one is, of course, circle, although you
can also draw a circle with arc or ellipse. 		

These commands do not move the turtle. 		

Drawing Curves

• circle 254
• EllipseArc 254
• Ellipse 255
• Arc 255
• arc2 256
• cngon 256

circle radius

draws a circle based on the turtles position and the given arguments. 		

The size is based on the radius . The current turtle position will be at the center of the circle. Circle
will also follow wrap/fence/windows modes. 		

Examples: 		

circle 100
circle 50

EllipseArc angle xradius yradius startAngle

draws part of or all of an ellipse based on the turtle heading, turtle position and the given

255
Graphics / Drawing Curves / EllipseArc

arguments. 		

The ellipse starts at the rear of the turtle heading and sweeps by the amount of angle starting at
startAngle . 		

The size is based on the xradius and yradius values. The current turtle position will be at the
center of the ellipse. EllipseArc will also follow wrap/fence/windows modes. 		

 xradius is the radius from the turtle to her right till the arc. 		

 yradius is the radius in direction of the turtle's head till the arc. 		

Examples: 		

EllipseArc 360 100 200 0
cs
EllipseArc 90 50 50 0
cs
EllipseArc 90 50 50 90

Ellipse xradius yradius

draws an ellipse based on the turtle heading, turtle position and the given arguments. 		

The center of the ellipse the current turtle position. xradius is the ellipse radius to the turtle's right,
yradius is the radius in direction of the turtle's head. 		

Ellipse will also follow wrap/fence/windows modes. 		

Examples: 		

Ellipse 100 200
fd 200
Ellipse 100 200
rt 30
Ellipse 100 200

256
Graphics / Drawing Curves / Arc

Arc angle radius

draws an arc of a circle, with the turtle at the center, with the specified radius , starting at the
turtle's heading and extending clockwise through the specified angle . The turtle does not move. 		

The size is based on the radius . The current turtle position will be at the center of the arc. Arc will
also follow wrap/fence/windows modes. 		

Arc 360 radius will of course draw a circle. 		

Example: 		

Arc 360 100
Arc 90 50

arc2 angle radius

like arc, draws an arc of a circle, but with the arc starting at the turtle, and the center to the right of
the turtle. If both angle and radius are positive a clockwise arc is drawn. If both are negative, a
counterclockwise arc is drawn. 		

Examples: 		

arc2 30 100 ;draws a right turn
arc2 -30 -100 ;draws a left turn

cngon sides radius				 (library procedure)

draws a regular polygon inside of a not drawn circle. 		

Examples: 		

257
Graphics / Drawing Curves / cngon

cngon 3 100
cngon 7 100

258
Graphics / Drawing filled shapes

Drawing filled shapes

...is easy with those commands. 		

Drawing filled shapes

• PolyStart 258
• PolyEnd 259
• TessStart 259
• TessContour 260
• TessEnd 260
• setTessWindingRule 260
• endSurfaceStart 261
• SurfaceColumn 262
• SurfaceEnd 263
• GraphicStart 264
• GraphicEnd 264
• drawGraphic 265
• VideoStart 265
• VideoFrame 265
• VideoEnd 266
• fillRect 266
• fillCircle 266
• fillEllipse 267
• fillPie 267
• Sphere 267
• Ellipsoid 268
• partialEllipsoid 268

PolyStart

command which tells logo to enter polygon mode. 		

This is cool for drawing shapes, especially in 3D. In perspective mode the polygon will be lighted.
		

Be careful: the polygon must be simple and convex. For non-convex polygons and polygons with

259
Graphics / Drawing filled shapes / PolyStart

holes use TessStart..TessContour..TessEnd! 		

Example: 		

setPC 4
PolyStart
box
PolyEnd

perspective
PolyStart
box
PolyEnd
rotatescene

PolyEnd

command which tells logo to finish polygon mode and draw the filled polygon. 		

This is cool for drawing shapes, esp. in 3D. In perspective mode the polygon will be lighted. 		

Example: 		

setPC 4
PolyStart
box
PolyEnd

perspective
PolyStart
box
PolyEnd
rotatescene

TessStart

260
Graphics / Drawing filled shapes / TessStart

command which tells Logo to enter polygon tesselation mode. 		

This is cool for drawing shapes, esp. in 3D. In perspective mode the polygon will be lighted. 		

The tesselated polygons feature is needed if you want to draw non-convex polygons or polygons
with holes. 		

Example: 		

TessStart ;a non-convex polygon
fd 100 rt 90 fd 100 rt 90 fd 100
rt 135 fd 100/sqrt 2 lt 90 fd 100/sqrt 2
TessEnd

TessContour

command for use in tesselation mode to start a new contour of the polygon, i.e. a hole. 		

Example: 		

TessStart ;a square with a triangular hole
repeat 4 [fd 100 rt 90]
TessContour
pu rt 45 fd 20 lt 15 pd fd 60 rt 120 fd 60 rt 120 fd 60 rt 120
TessEnd

TessEnd

command to leave polygon tesselation mode. See TessStart, TessContour! 		

setTessWindingRule rulenr

261
Graphics / Drawing filled shapes / setTessWindingRule

command to set the winding rule for the next tesselations to rulenr . The rulenr can be any of the
following values: 		

0 GLU_TESS_WINDING_ODD
1 GLU_TESS_WINDING_NONZERO
2 GLU_TESS_WINDING_POSITIVE
3 GLU_TESS_WINDING_NEGATIVE
4 GLU_TESS_WINDING_ABS_GEQ_TWO

Example: 		

to tessstar
 cs
 ht
 image=loadImage "bricks.png
 tex=Texture image
 enTex
 window
 setPC "white
 back 300
 setTessWindingRule 1
 TessStart
 setTexXY 0.4 1 fd 600 rt 180-72/2
 setTexXY 1 0.2 fd 600 rt 180-72/2
 setTexXY 0 0.5 fd 600 rt 180-72/2
 setTexXY 1 0.8 fd 600 rt 180-72/2
 setTexXY 0.4 0 fd 600 rt 180-72/2
 TessEnd
end

endSurfaceStart

command which tells Logo to enter surface definiton mode. It's very easy to define surfaces with
this command, SurfaceColumn and SurfaceEnd. 		

The normal vectors of the first column of points is linked to the last column, like in a torus. So you
can easily define closed surfaces. 		

262
Graphics / Drawing filled shapes / endSurfaceStart

See also pretzel2.lg and 3dsurfaces3.lg! 		

Example: 		

to surfacetest
 perspective
 r=200
 setpc rgb 1 0 0
 ht
 SurfaceStart
 for [z -1 1 0.1]
 [pu
 setPosXYZ (list -1 (cos 90*-1)*cos 90*z z)*r
 pd
 for [x -1 1 0.1]
 [setPosXYZ (list x (cos 90*x)*cos 90*z z)*r
]
 SurfaceColumn
]
 SurfaceEnd
 rotateScene
end

SurfaceColumn

command which to call after you have defined a column of surface points, and before the next
column of surface points. 		

Example: 		

263
Graphics / Drawing filled shapes / SurfaceColumn

to surfacetest
 perspective
 r=200
 setpc rgb 1 0 0
 ht
 SurfaceStart
 for [z -1 1 0.1]
 [pu
 setPosXYZ (list -1 (cos 90*-1)*cos 90*z z)*r
 pd
 for [x -1 1 0.1]
 [setPosXYZ (list x (cos 90*x)*cos 90*z z)*r
]
 SurfaceColumn
]
 SurfaceEnd
 rotateScene
end

SurfaceEnd

command to end surface mode. 		

Example: 		

264
Graphics / Drawing filled shapes / SurfaceEnd

to surfacetest
 perspective
 r=200
 setpc rgb 1 0 0
 ht
 SurfaceStart
 for [z -1 1 0.1]
 [pu
 setPosXYZ (list -1 (cos 90*-1)*cos 90*z z)*r
 pd
 for [x -1 1 0.1]
 [setPosXYZ (list x (cos 90*x)*cos 90*z z)*r
]
 SurfaceColumn
]
 SurfaceEnd
 rotateScene
end

GraphicStart

command starting a new graphic command list. All the graphic commands written on the screen till
GraphicEnd are recorded to it. 		

Example: 		

to testDrawGraphic
 GraphicStart
 box
 abox=GraphicEnd
 cs
 rt 30 fd 100
 drawGraphic abox
 lt 40 fd 100
 (drawGraphic abox 0.5)
end

265
Graphics / Drawing filled shapes / GraphicEnd

GraphicEnd

outputs the graphic command list recorded since the last GraphicStart. Its output is a new Logo type
which cannot be converted to a text form so far. 		

For an example see GraphicStart. 		

drawGraphic agraphic
(drawGraphic agraphic scaling)

command which plays the graphic command list agraphic at the current position and orientation of
the turtle. The graphic will be scaled by a factor of scaling if given. For an example see
GraphicStart or drawasteroids.lg. 		

VideoStart filename
(VideoStart filename framerate)

command starting the creation of a Video for Windows file (.avi) with name filename and
framerate (or framerate =30 default). 		

Example: 		

VideoStart "test
for [i 0 90] [cs rt i rbox updateGraph VideoFrame]
VideoEnd

VideoFrame

command writing a frame to the with VideoStart opened Video for Windows file (.avi). 		

266
Graphics / Drawing filled shapes / VideoFrame

Example: 		

VideoStart "test
for [i 0 90] [cs rt i rbox updateGraph VideoFrame]
VideoEnd

VideoEnd

command finishing the with VideoStart opened Video for Windows file (.avi). 		

Example: 		

VideoStart "test
for [i 0 90] [cs rt i rbox updateGraph VideoFrame]
VideoEnd

fillRect xy1 xy2

draws a filled rectangle between the coordinates xy1 and xy2 in the floodColor . 		

Example: 		

rt 30
setFC RGB 1 0 0
fillRect [0 0][200 100]

fillCircle radius

fills a circle at the turtle with radius in the floodColor. 		

Example: 		

267
Graphics / Drawing filled shapes / fillCircle

setFC RGB 1 0 0
fillCircle 100

fillEllipse radiusX radiusY

draws a filled ellipse a the turtle with radiusX and radiusY in the floodColor. The radii are
relative to the turtle heading. 		

Example: 		

setFC RGB 1 0 0
right 30
fillEllipse 200 100

fillPie angle radius

command drawing a filled pie at the turtle's position from the Heading clockwise. 		

Example: 		

cS
rt 30
fillPie 90 200

Sphere radius
(Sphere radius slices stacks)

command drawing a sphere with radius in perspective mode. 		

The optional arguments slices and stacks are integer numbers, which allow finer control about the
drawing. They should be not to big (about 500 maximal), because else the drawing will take ages. 		

268
Graphics / Drawing filled shapes / Sphere

Example: 		

perspective
Sphere 100
rotatescene

Ellipsoid radiusx radiusy radiusz

Example: 		

cS
perspective
setPC 4
Ellipsoid 100 200 300
rotatescene

partialEllipsoid radiusx radiusy radiusz sls sle sl sts ste st

command to draw a partial ellipsoid with the three radii radiusx , radiusy and radiusz , relative
to the current turtle orientation. 		

 sls is slicesStart (angle in degrees, 0..360), 		

 sle is slicesEnd (angle in degrees, 0..360), 		

 sl is slices (integer 1..100 resonably), 		

 sts is stacksStart (angle in degrees, 0..180), 		

 ste is stacksEnd (angle in degrees, 0..180), 		

 st is stacks (integer 1..100 resonably). 		

Examples: 		

269
Graphics / Drawing filled shapes / partialEllipsoid

perspective
partialEllipsoid 100 200 300 0 180 10 0 90 10
partialEllipsoid 100 200 300 0 360 10 0 180 10
rotatescene

270
Graphics / Lighting

Lighting

Here are functions to set the lighting parameters of OpenGL. 		

Lighting

• setLightPos 270
• setLightAmbient 270
• setLightDiffuse 271
• setLightSpecular 271

setLightPos 3darraypos

command setting the position of light0 of OpenGL. 		

The argument is a array containing three numbers (the position). 		

Example: 		

cs
perspective
setPC 4
Sphere 300
setLightPos {0 0 100}
redraw

setLightAmbient color

command to set the ambient light color . color is a int build with RGB, RGBA, HSB, or HSBA. 		

Example: 		

271
Graphics / Lighting / setLightAmbient

cS
setPC 7
perspective
setLightAmbient RGB 1 0 0
Sphere 300

setLightDiffuse color

command to set the diffuse light color . color is a int build with RGB, RGBA, HSB, or HSBA. 		

Example: 		

cS
setPC 7
perspective
setLightDiffuse RGB 1 0 0
Sphere 300

setLightSpecular color

command to set the specular light color . color is a int build with RGB, RGBA, HSB, or HSBA. 		

Example: 		

cS
setPC 7
perspective
setLightSpecular RGB 1 0 0
Sphere 300

272
Graphics / Fog

Fog

The nice fog effect of OpenGL is now available in aUCBLogo (4.689). 		

Fog

• setFogDensity 272
• setFogRange 272
• setFogColor 273
• setFogMode 273

setFogDensity density

command to set the density parameter of the OpenGL fog. It does not enableFog, you must call
that explicitly. Typical values for density are 0.001...0.5. 		

Example: 		

cs perspective
setFogDensity 0.3
setFogColor "white
enableFog
x=FloatArray random IntArray rSeqFA 800 800 1000000
y=FloatArray random IntArray rSeqFA 400 400 1000000
z=FloatArray random IntArray rSeqFA 800 800 1000000
setPixelXYZ x-400 y-400 z-400 0
rotatescene

setFogRange start end

command to set the range parameter of the OpenGL fog. start and end are numbers in the range
of visible coordinates, typically start is 200..-400, end is 0..1000. 		

273
Graphics / Fog / setFogRange

Example: 		

setFogRange 0 300		

setFogColor color

command to set the fog color to the color argument, which must be a valid color . See also
setPenColor! 		

Example: 		

setFogColor "white		

setFogMode mode

command to set the fog mode . It is recommended to read on the OpenGL docs about the fog
equations. 		

The following constants can be used as mode : 		

GL_LINEAR
GL_EXP
GL_EXP2

Linear fog is currently selected on every call to perspective. 		

Example: 		

274
Graphics / Fog / setFogMode

cs perspective
setFogDensity 0.001
setFogColor "white
setFogMode GL_EXP
enableFog
x=FloatArray random IntArray rSeqFA 800 800 1000000
y=FloatArray random IntArray rSeqFA 400 400 1000000
z=FloatArray random IntArray rSeqFA 800 800 1000000
setPixelXYZ x-400 y-400 z-400 0

275
Graphics / Pictures

Pictures

Here are commands to save and load graphics. 		

Pictures

• savePicture 275, savePic 275
• loadPicture 275, loadPic 275
• savePictureText 275
• loadPictureText 276
• savePostScript 276, savePS 276
• saveScreen 276
• saveScreenVector 277
• saveSize 279
• setSaveSize 279

savePicture filename
savePic filename

command. Writes a file with the specified name containing the state of the graphics window in
Logo's internal format. This picture can be restored to the screen using loadPic. The format is not
portable between platforms, nor is it easily readable by other programs. See savePS or
savePictureText to export Logo graphics for other programs. 		

loadPicture filename
loadPic filename

command. Reads the specified file, which must have been written by a savePic command, and
restores the graphics window and color palette settings to the values stored in the file. Any drawing
previously on the screen is cleared. 		

savePictureText filename

276
Graphics / Pictures / savePictureText

command. Writes a file with the specified name containing the state of the graphics window in text
format. This picture can be restored to the screen using loadPictureText. The format is portable
between platforms, and it is easily readable by other programs. See savePicture for a faster but
non-portable method. 		

loadPictureText filename

command. Reads the specified file, which must have been written by a savePictureText command
or a compatible generator, and restores the graphics window to the values stored in	the file. Any
drawing previously on the screen is cleared. See loadPicture for a faster but non-portable method. 		

savePostScript filename
savePS filename

does not work well yet! 		

The new primitive saveScreenVector works better. 		

command. Writes a file with the specified name, containing an Encapsulated Postscript (EPS)
representation of the state of the graphics window. This file can be imported into other programs
that understand EPS format. Restrictions: the drawing cannot use ARC, FILL, PENERASE, or
PENREVERSE; any such instructions will be ignored in the translation to Postscript form. 		

saveScreen filename

command. Saves the graphics screen to the image file filename . The size of the resulting image
depends on the SaveSize. High resolution saving is currently only supported under Windows. 		

Here's the list of available picture-saving file formats: .bmp .png .jpeg .pcx .pnm .tiff .xpm .ico .cur
		

Example: 		

277
Graphics / Pictures / saveScreen

setSaveSize [400 300]
cs
crbox
boundingbox
rt 30
saveScreen "test.png

saveScreenVector filename
(saveScreenVector filename sort options colornr)

Command to save the currently active Graph in a vector graphics format, which will be determined
by the file extension. 		

The used library GL2PS supports six formats so far: 		

PS The output stream will be in PostScript format. 		

EPS The output stream will be in Encapsulated PostScript format. 		

PDF The output stream will be in Portable Document Format. 		

TEX The output will be a LATEX file containing only the text strings of the plot (cf. section 2.2),
as well as an \includegraphics command including a graphic file having the same basename as
filename .1 		

GL2PS_SVG (Experimental) The output stream will be in Scalar Vector Graphics format. 		

GL2PS_PGF (Experimental) The output stream will be in Portable LaTeX Graphics format. 		

 sort Specifies the sorting algorithm, chosen among: 		

GL2PS_NO_SORT The primitives are not sorted, and are output in stream in the order they appear
in the feedback buffer. This is sufficient for two-dimensional scenes. 		

GL2PS_SIMPLE_SORT The primitives are sorted according to their barycenter. This can be

278
Graphics / Pictures / saveScreenVector

sufficient for simple three-dimensional scenes and/or when correctness is not crucial. 		

GL2PS_BSP_SORT The primitives are inserted in a Binary Space Partition (BSP) tree. The tree is
then traversed back to front in a painter-like algorithm. This should be used whenever an accurate
rendering of a three-dimensional scene is sought. Beware that this algorithm requires a lot more
computational time (and memory) than the simple barycentric sort . 		

 options Sets global plot options , chosen among (multiple options can be combined with the
bitwise inclusive OR symbol |): 		

GL2PS_NONE No option. 		

GL2PS_DRAW_BACKGROUND The background frame is drawn in the plot. 		

GL2PS_SIMPLE_LINE_OFFSET A small offset is added in the z-buffer to all the lines in the plot.
This is a simplified version of the GL2PS_POLYGON_OFFSET_FILL functionality (cf. section
2.4), putting all the lines of the rendered image slightly in front of their actual position. This thus
performs a simple anti-aliasing solution, e.g. for finiteelement-like meshes. 		

GL2PS_SILENT All the messages written by GL2PS on the error stream are suppressed. 		

GL2PS_BEST_ROOT The construction of the BSP tree is optimized by choosing the root
primitives leading to the minimum number of splits. 		

GL2PS_NO_TEXT All the text strings are suppressed from the output stream. This is useful to
produce the image part of a LATEX plot. 		

GL2PS_NO_PIXMAP All the pixmaps are suppressed from the output stream. 		

GL2PS_LANDSCAPE The plot is output in landscape orientation instead of portrait. 		

GL2PS_NO_PS3_SHADING (for PostScript output only) No use is made of the shfill PostScript
level 3 operator. Using shfill enhances the plotting of smooth shaded primitives but can lead to
problems when converting PostScript files into PDF files. See also options colornr below. 		

GL2PS_NO_BLENDING Blending (transparency) is disabled alltogether (regardless of the current
GL_BLEND or GL2PS_BLEND status). 		

GL2PS_OCCLUSION_CULL All the hidden polygons are removed from the output, thus

279
Graphics / Pictures / saveScreenVector

substantially reducing the size of the output file. 		

GL2PS_USE_CURRENT_VIEWPORT The current OpenGL viewport is used instead of viewport.
		

GL2PS_TIGHT_BOUNDING_BOX The viewport is ignored and the the plot is generated with a
tight bounding box, i.e., a bounding box enclosing as tightly as possible all the OpenGL entities in
the scene. 		

 colornr (for PostScript output only) Controls the number of flat-shaded (sub-)triangles used to
approximate a smooth-shaded triangle when the shfill operator is not supported by the system, or
when the GL2PS_NO_PS3_SHADING option is set. The argument colornr specify the number of
values used for interpolating the full range of red, green and blue color components; that is, a
triangle is recursively subdivided until the color difference between two of its vertices is smaller
that 1/nr for the red component, 1/ng for the green component and 1/nb for the blue component. If
the arguments are set to zero, default values are used. 		

Examples: 		

spielbrett
saveScreenVector "test.ps
saveScreenVector "test.eps
(saveScreenVector "test.pdf GL2PS_NO_SORT
 GL2PS_SIMPLE_LINE_OFFSET+GL2PS_DRAW_BACKGROUND)

				sizelist saveSize

outputs the two element list sizelist containing the width and height of the virtual graphics canvas
which will be used to saveScreen. It is [800 600] by default. 		

Example: saveSize ;[2000 1500] ;-)		

setSaveSize sizeList

280
Graphics / Pictures / setSaveSize

command setting the sizeList containing width and height of the of the virtual graphics canvas
which will be used to saveScreen. 		

Example: 		

tree
setSaveSize [4000 3000]
saveScreen "temp.bmp ;then you have a highres tree image

281
Graphics / Bitmaps

Bitmaps

A Bitmap is an internal logo node type which can hold a RGBA bitmap of some specified width
and height. 		

Bitmaps

• BitCopy 281
• BitPaste 281
• loadImage 282
• saveImage 282
• BitMakeTransparent 283, BitTrans 283
• BitSetPixel 283
• BitPixel 284
• BitMaxX 284
• BitMaxY 284

				bitmap BitCopy width height

outputs a bitmap which can be assigned to a variable and again pasted to the screen with bitPaste. 		

Into the bitmap will be copied the part of the graphics screen right up from the turtle with width
and height . See also the bitmapTest.lg example! 		

Example: 		

tree
b=BitCopy 200 200
bk 200
BitPaste b

BitPaste bitmap

282
Graphics / Bitmaps / BitPaste

command which pastes the bitmap with lower left corner at the turtle to the screen. 		

Example: 		

tree
b=BitCopy 200 200
bk 200
BitPaste b

				bitmap loadImage filename

outputs a bitmap loaded from the file filename . File formats currently supported are: 		

wxBMPHandler For loading and saving.
wxPNGHandler For loading (including alpha support) and saving.
wxJPEGHandler For loading and saving.
wxGIFHandler Only for loading, due to legal issues.
wxPCXHandler For loading and saving.
wxPNMHandler For loading and saving.
wxTIFFHandler For loading and saving.
wxIFFHandler For loading only.
wxXPMHandler For loading and saving.
wxICOHandler For loading and saving.
wxCURHandler For loading and saving.
wxANIHandler For loading only.

Loading PNMs only works for ASCII or raw RGB images. 		

Example: 		

b=loadImage "iris.png
BitPaste b

saveImage bitmap filename

283
Graphics / Bitmaps / saveImage

command saving the bitmap to a file. File formats currently supported are: 		

wxBMPHandler For loading and saving.
wxPNGHandler For loading (including alpha support) and saving.
wxJPEGHandler For loading and saving.
wxGIFHandler Only for loading, due to legal issues.
wxPCXHandler For loading and saving.
wxPNMHandler For loading and saving.
wxTIFFHandler For loading and saving.
wxIFFHandler For loading only.
wxXPMHandler For loading and saving.
wxICOHandler For loading and saving.
wxCURHandler For loading and saving.
wxANIHandler For loading only.

When saving in PCX format, wxPCXHandler will count the number of different colours in the
image; if there are 256 or less colours, it will save as 8 bit, else it will save as 24 bit. 		

When saving in PNM format, wxPNMHandler will always save as raw RGB. 		

Example: 		

b=loadImage "iris.png
saveImage b "temp.png

BitMakeTransparent bitmap color
BitTrans bitmap color

command which sets the alpha value of the color in the bitmap to 0, so this color will be
transparent on BitPaste-ing. 		

Example: 		

b=loadImage "iris.png
BitTrans b rgb 1 1 1
fd 100
BitPaste b

284
Graphics / Bitmaps / BitSetPixel

BitSetPixel bitmap x y color

sets the pixel at position (x y) of the bitmap to color . For an example see throwcoin.lg. 		

BitPixel bitmap x y

outputs the color at position (x y) of the bitmap . For an example see throwcoin.lg. 		

BitMaxX abitmap

outputs the maximal X coordinate of the bitmap abitmap for usage with the BitSetPixel and
BitPixel primitves. 		

Example: 		

b=BitCopy 100 100
repeat BitMaxY b [
 BitSetPixel b BitMaxX b repcount "red
]
BitPaste b

BitMaxY abitmap

outputs the maximal Y coordinate of the bitmap abitmap for usage with the BitSetPixel and
BitPixel primitves. 		

Example: 		

285
Graphics / Bitmaps / BitMaxY

b=BitCopy 100 100
repeat BitMaxX b [
 BitSetPixel b repcount BitMaxY b "red
]
BitPaste b

286
Graphics / Direct Graphics

Direct Graphics

These are primitives for direct graphics without using a turtle, which is sometimes more convenient
for simulations and it is faster, too. 		

Also here are operations for working with colors. 		

Direct Graphics

• setPixel 286
• setPixelXY 287
• setPixelXYZ 287
• Line 288
• RGB 289
• RGBA 289
• reRGB 289
• reRGBA 290
• HSB 290
• HSBA 290
• reHSB 291
• reHSBA 291
• addColors 292
• addColorsMod 292
• getColorDatabase 293

setPixel coordinate (s) color(s)

sets the pixels at the coordinate (s) to the relating color(s). setPixel can now also take 3D
coordiantes as arguments. It is also possible to use a FloatArray of length 3 for the coordinates. 		

Examples: 		

287
Graphics / Direct Graphics / setPixel

setPixel [10 10] 0
setPixel [[10 10][20 10]] 0
setPixel [[10 10][20 10]] [12 14]
perspective
setPixel {[10 10 10][20 10 0]} {12 14}
setPixel FloatArray {100 2 0} 0

setPixelXY Xcoors Ycoors color (s)

For easier and faster plotting the new command has been written: It takes structured X data and
equally structured Y data as separate arguments. It's not really complete and has some bugs, to
compensate those you should cast your structures to int or float, like in the example. The type
FloatArray is allowed for Xcoors and Ycoors , together with IntArray as colors, so it's fast. The
Ycoors can also be just one number while the must be of type Array, so you can draw your Graph
scanlinewise. 		

Examples: 		

setPixelXY int [0 1 2 3 4] int [100 98 96 94 92] 0
x=rSeqFA -20 20 400
y=x*x
c=mod (IntArray iSeq 1 count x) 16
setPixelXY x*20 y c
cs
x=Array rSeq -20 20 400
y=x*x
c=mod (Array iSeq 1 count x) 16
repeat 300 ~
[setPixelXY x*20 y*#/300 c
 c=rotate c 1
]

setPixelXYZ Xcoors Ycoors Zcoors color (s)

288
Graphics / Direct Graphics / setPixelXYZ

For easier and faster plotting the new command has been written: It takes structured X data and
equally structured Y and Z data as separate arguments. The type FloatArray is allowed for Xcoors
and Ycoors , together with IntArray as colors, so it's fast. 		

Examples: 		

cs perspective
x=int [0 1 2 3 4]
y=int [100 98 96 94 92]
z=int [10 20 30 40 50]
setPixelXYZ x y z 0
rotatescene

cs
z=rSeqFA -100 100 5000
x=cos z/10*360
y=sin z/10*360
c=mod (IntArray iSeq 1 count x) 16
setPixelXYZ x*z y*z z*5 c
rotatescene

cs
z=Array rSeq -100 100 5000
x=cos z/10*360
y=sin z/10*360
c=mod (Array iSeq 1 count x) 16
repeat 10 ~
[setPixelXYZ x*z y*z z*z*#/10 c
 c=rotate c 1
]
rotatescene

Line coordinates color (s)

draws lines between the coordinates in the respective color (s). The first color in a list or array
of colors is ignored. There is a bug when using multicolors if the turtle is shown, so hideTurtle
before line. 		

289
Graphics / Direct Graphics / Line

Examples: 		

Line [[0 0][100 0][100 100]] 0
ht Line [[0 0][100 0][100 100]] (list rgb 1 0 0 rgb 0 1 0 rgb 0
0 1) st

RGB red green blue

outputs an integer color of the format red :8 green :8 blue :8 bits from the three parameters
between 0 and 1. 		

Example: 		

setPC RGB 1 0 0 pd fd 100 ;draws a red line		

RGBA red green blue alpha

outputs an integer color of the format 		

 red :8 green :8 blue :8 alpha :8 bits 		

from the four parameters between 0 and 1. Alpha is used for transparency - 0 is transparent. 		

Examples: 		

hex RGBA 0.5 0.25 0 1 ;FF003F7F ;-)
cs
repeat 200 ~
[setPC RGBA 0 0 0 repCount/200
 box
 rt 30 fd 1 lt 30
]

290
Graphics / Direct Graphics / reRGB

reRGB color

outputs a list of the three numbers for red, green and blue of the color . 		

Example: 		

reRGB RGB 1 0 0 ;[1 0 0] ;-)		

reRGBA color

outputs a list of the four numbers between 0 and 1 for red, green, blue and alpha of the color . 		

Example: 		

reRGBA RGBA 1 0.5 0.2 0.1 ;[1 0.498039 0.2 0.0980392] ;-)		

HSB hue saturation brightness

outputs an integer color of the format red:8 green:8 blue:8 bits from hue between 0 and 360 (hue
=0 is red, hue =120 is green, hue =240 is blue) and saturation and brightness between 0 and 1. 		

Example: 		

setPC HSB 120 1 1 pd fd 100 ;draws a green line		

HSBA hue saturation brightness

outputs an integer color of the format 		

red:8 green:8 blue:8 alpha:8 bits 		

from hue between 0 and 360 (hue =0 is red, hue =120 is green, hue =240 is blue) and saturation
and brightness between 0 and 1. 		

291
Graphics / Direct Graphics / HSBA

Alpha is used for transparency - 0 is transparent. 		

Example: 		

cS
repeat 200 [
 setPC HSBA 360*repcount/200 1 1 1-repCount/200
 box
 rt 30 fd 1 lt 30
]

reHSB color

outputs a list of three numbers, hue, saturation and brightness, which represent the color in the
HSB color space. 		

You can now easily read the color database using getColorDatabase, convert all the colors to HSB,
sort by hue, and write a nice HTML colortable, like in colordb2html.lg. 		

reHSB does not round the color values, but it can only work with integer colors using 8 bits per
channel. If you need more exactness, use the Logo functions defined in testrgb2hsb.lg. 		

Example: 		

show reHSB HSB 83 0.9 0.75
;[83.0233 0.900524 0.74902]

reHSBA color

outputs a list of four numbers, hue, saturation, brightness and alpha, which represent the color in
the HSB color space including an alpha channel. 		

Example: 		

292
Graphics / Direct Graphics / reHSBA

show reHSBA HSBA 83 0.9 0.75 0.666
;[83.0233 0.900524 0.74902 0.662745]

				resultingColor addColors c1 c2

outputs the resultingColor which consists of the two colors color1 and color2. 		

The colors are added channelwise (R,G,B,A) with saturation like in the following logo procedure,
but faster: 		

to addColors_ ca cb
 local [ra rb r g b]
 ra=reRGB ca
 rb=reRGB cb
 r=ra.1+rb.1 if r>1 [r=1]
 g=ra.2+rb.2 if g>1 [g=1]
 b=ra.3+rb.3 if b>1 [b=1]
 a=ra.4+rb.4 if a>1 [a=1]
 output RGBA r g b a
end

reRGBA addColors RGB .8 0 1 RGB .3 .4 .5
;[1 0.4 1 1]

				resultingColor addColorsMod c1 c2

outputs the resultingColor which consists of the two colors color1 and color2. 		

The colors are added channelwise (R,G,B,A) while keeping the channels in the allowed range by
using mod, like in the following logo procedure, but faster: 		

293
Graphics / Direct Graphics / addColorsMod

to addColors_ ca cb
 local [ra rb r g b]
 ra=reRGBA ca
 rb=reRGBA cb
 r=mod ra.1+rb.1 1
 g=mod ra.2+rb.2 1
 b=mod ra.3+rb.3 1
 a=mod ra.4+rb.4 1
 output RGBA r g b a
end

Example: 		

reRGBA addColorsMod RGB .8 .9 1 RGB .3 .4 .5
;[0.0941176 0.294118 0.494118 1]

getColorDatabase

outputs a list of lists of color name, red, green and blue value of all available named colors in the
color database. 		

294
Graphics / Projection Matrix

Projection Matrix

Functions for work with the graphical projection matrix. So you can use a specific graphic at
different positions and rotations. For an example see spelltest.lg! 		

Projection Matrix

• Matrix 294
• setMatrix 295, setM 295
• TurtleMatrix 295, TM 295
• setTurtleMatrix 295, setTM 295
• pushMatrix 296
• popMatrix 296
• IdentityMatrix 297, IDM 297
• setIdentityMatrix 297, setIDM 297

Matrix

operation which outputs the current projection matrix for the graphics: This is 		

(list (list basex_x basex_y basex_z)
 (list basey_x basey_y basey_z)
 (list basez_x basez_y basez_z)
 (list center_x center_y center_z))

(the bases and center are internal variables not directly accessable by the user). 		

Examples: 		

295
Graphics / Projection Matrix / Matrix

setidm
cs
Matrix ;[[1 0 0][0 1 0][0 0 1][0 0 0]] ;-)
fd 100
rt 30
setM TM
cs
rbox
Matrix
;[[0.866025 -0.5 0][0.5 0.866025 0][0 0 1][0 100 0]] ;-)

setMatrix aMatrix
setM aMatrix

command which sets the current OpenGL modelview matrix to matrix. 		

Example: 		

tree
Matrix ;[[1 0 0][0 1 0][0 0 1][0 0 0]] ;-)
setMatrix Matrix*0.5
tree

TurtleMatrix
TM

operation which outputs the matrix of the turtle, ready for use with setmatrix. 		

Example: 		

setMatrix TM		

setTurtleMatrix

296
Graphics / Projection Matrix / setTurtleMatrix

setTM

command which sets the turtle matrix as the new projection matrix. 		

See also the spelltest.lg example! 		

Example: 		

rt 30
fd 100
setTM
pu Home pd

pushMatrix

command which pushs the current modelview matrix onto the matrix stack of OpenGL. 		

Example: 		

rt 30
fd 100
pushmatrix
setTM
popmatrix

popMatrix

command popping the latest pushed modelview matrix from the OpenGL matrix stack. 		

Example: 		

297
Graphics / Projection Matrix / popMatrix

rt 30
fd 100
pushmatrix
setTM
popmatrix

IdentityMatrix
IDM

operation which outputs the identity matrix. 		

Example: 		

setMatrix IDM		

setIdentityMatrix
setIDM

command which sets the projection matrix to the identity. 		

298
Graphics / Texturing

Texturing

...is a cool feature of OpenGL to decorate filled shapes with a bitmap. 		

Texturing

• Texture 298
• setTexXY 299
• setTexPos 299
• enableTexture 300, enTex 300
• disableTexture 300, disTex 300
• deleteTextures 300

 texhandle Texture bitmap
Texture texhandle
Texture []

Command or operation, depending on the argument. 		

Sets the momentary texture to bitmap if the argument is a bitmap and outputs a texhandle
integer, by which the texture can be selected faster. 		

If given a texhandle (a integer output from an earlier call of Texture), the respective texture is
selected. 		

Textures only are applied when enableTexture is called once. 		

Example: 		

299
Graphics / Texturing / Texture

b=loadImage "iris.png texhandle =Texture b
enTex
setPC 4
(tcube 400)
cs
enTex
Texture []
Texture texhandle
(tcube 400)

setTexXY x y

sets the OpenGL texture coordinates to (x , y). x and y should be in the range of 0..1 for
displaying only one occurence of the texture. If the values are greater the texture is repeated. 		

This primitive is useful with PolyStart..PolyEnd and TessStart..TessEnd. 		

Example: 		

entex
bricks=loadImage "bricks.png
tex=texture bricks
setpc "white
PolyStart
setTexXY 0 1 fd 100 rt 90
setTexXY 1 1 fd 100 rt 90
setTexXY 1 0 fd 100 rt 90
setTexXY 0 0 fd 100 rt 90
PolyEnd

setTexPos xylist

sets the OpenGL texture coordinates to [x y]. x and y should be in the range of 0..1 for displaying
only one occurence of the texture. If the values are greater the texture is repeated. 		

300
Graphics / Texturing / setTexPos

This primitive is useful with PolyStart..PolyEnd and TessStart..TessEnd. 		

Examples: 		

setTexPos [0.2 0.9]
x=0.2 y=0.9
setTexPos list x y

enableTexture
enTex

enables the texturing of polygonal surfaces. 		

See also: Texture. 		

Example: 		

entex
bricks=loadImage "bricks.png
tex=texture bricks
setfc "white
fillRect [-100 -100][100 100]

disableTexture
disTex

disables the texturing of polygonal surfaces. 		

See also: Texture. 		

deleteTextures

301
Graphics / Texturing / deleteTextures

command which serves as a possible cleanup of texture memory, so a texture memory overflow can
be prevented, if you create many textures which you maybe only use once or a few times, after
which they are obsolete. 		

A good example for this command is candle.lg. 		

302
Graphics / Shadows

Shadows

Shadow casting is a difficult-to-implement feature, but it's now available in aUCBLogo-4.69. It still
has some bugs, which you can see as graphic noise or artefacts. I don't know how to completely
remove this noise until now. Also cylinderlines wont cast a shadow yet. But you can use
SurfaceStart..SurfaceColumn..SurfaceEnd, PolyStart..PolyEnd, TessStart..TessContour..TessEnd,
Sphere and partialEllipsoid, which will cast shadows. 		

Shadows

• enableShadows 302
• disableShadows 302
• castShadows 303
• clearShadows 303
• setShadowColor 303
• ShadowColor 304

enableShadows

command to set the internal flag to enable shadow creating. It must be set before you draw graphics,
 if you want to see any shadows. 		

Additionally you must either call the primitive castShadows maybe followed by updateGraph, or
redraw to produce the shadows. 		

Example: 		

cs perspective window
enableShadows
Sphere 100
setPenColor "green
back 1000 sphere 800
castShadows

303
Graphics / Shadows / disableShadows

disableShadows

command to reset the internal flag to disable shadow creating. 		

castShadows

command to draw the shadows which have been constructed by
SurfaceStart..SurfaceColumn..SurfaceEnd, PolyStart..PolyEnd, TessStart..TessContour..TessEnd,
Sphere and partialEllipsoid, after a call to enableShadows. 		

If you can't see the shadow of a specific surface, it is likely that you must draw it with the opposite
normal. This is easy to accomplish by drawing reversly, so if you had used rt, use lt instead, then it
should work. 		

Example: 		

perspective cs clearshadows
enableShadows
setpc "blue
pcube
back 1000
setpc "green
sphere 900
castshadows
rotatescene

clearShadows

command to clear the shadow objects buffer. This can be necessary if you want to draw somthing
completely different in a new scene. I did not made clearScreen clear the shadow objects, because it
might be neccesary to be able to redraw the scene using a different viewpoint, and this is much
faster than recreating the whole scene. 		

304
Graphics / Shadows / setShadowColor

setShadowColor acolor

command to set the color of future shadows to acolor . You can use all color formats that
setPenColor supports. 		

Example: 		

perspective cs clearshadows
enableShadows
setpc "blue
pcube
back 1000
setpc "green
sphere 900
setShadowColor "red
castshadows
rotatescene

ShadowColor

outputs the currently selected color for the next shadows which you draw with castShadows. 		

305
Workspace Management

Workspace Management

Workspace Management

• Procedure Definition 306
• Variable Definition 312
• Property Lists 315
• Workspace Predicates 318
• Workspace Queries 321
• Inspection 328
• Workspace Control 334
• Editing 347
• Erasing 350

306
Workspace Management / Procedure Definition

Procedure Definition

Procedure Definition

• to 306
• define 308
• Text 309
• fullText 310
• copyDef 310

to procname :input1 :input2 ...				 (special form)

command. Prepares Logo to accept a procedure definition. The procedure will be named "
procname " and there must not already be a procedure by that name. The inputs will be called
"input1" etc. Any number of inputs are allowed, including none. Names of procedures and inputs
are case-insensitive. 		

Unlike every other Logo procedure, TO takes as its inputs the actual words typed in the instruction
line, as if they were all quoted, rather than the results of evaluating expressions to provide the
inputs. (That's what "special form" means.) 		

This version of Logo allows variable numbers of inputs to a procedure. Every procedure has a
MINIMUM, DEFAULT, and MAXIMUM number of inputs. (The latter can be infinite.) 		

The MINIMUM number of inputs is the number of required inputs, which must come first. A
required input is indicated by the
 :inputname
notation. 		

Examples: 		

to go
 fd 100
end

307
Workspace Management / Procedure Definition / to

to printabc :a :b :c
 (pr :a :b :c)
end

As a test you can type "go", which will move the turtle 100 forward. When you type "printabc 1 2
3", printabc will be invoked and will print 1 2 3. 		

After all the required inputs can be zero or more optional inputs, represented by the following
notation:
 [:inputname default_value_expression]
When the procedure is invoked, if actual inputs are not supplied for these optional inputs, the
default value expressions are evaluated to set values for the corresponding input names. The inputs
are processed from left to right, so a default value expression can be based on earlier inputs. 		

Examples: 		

to proc :inlist [:startvalue first :inlist]
;...some code here
end

If the procedure is invoked by saying
 proc [a b c]
then the variable INLIST will have the value [A B C] and the variable STARTVALUE will have
the value A. If the procedure is invoked by saying
 (proc [a b c] "x)
then INLIST will have the value [A B C] and STARTVALUE will have the value X. 		

Example: 		

to go [:steps 100]
 fd :steps
end

You can then type "go" which will do "fd 100", or you can write "(go 10)" which will do "fd 10". 		

After all the required and optional input can come a single "rest" input, represented by the following
notation:
 [:inputname]
This is a rest input rather than an optional input because there is no default value expression. There
can be at most one rest input. When the procedure is invoked, the value of this input will be a list

308
Workspace Management / Procedure Definition / to

containing all of the actual inputs provided that were not used for required or optional inputs. 		

Example: 		

to proc :in1 [:in2 "foo] [:in3]
;...some code here
end

If this procedure is invoked by saying
 proc "x
then IN1 has the value X, IN2 has the value FOO, and IN3 has the value [] (the empty list). If it's
invoked by saying
 (proc "a "b "c "d)
then IN1 has the value A, IN2 has the value B, and IN3 has the value [C D]. 		

The MAXIMUM number of inputs for a procedure is infinite if a rest input is given; otherwise, it is
the number of required inputs plus the number of optional inputs. 		

The DEFAULT number of inputs for a procedure, which is the number of inputs that it will accept
if its invocation is not enclosed in parentheses, is ordinarily equal to the minimum number. If you
want a different default number you can indicate that by putting the desired default number as the
last thing on the TO line. 		

Example: 		

to proc :in1 [:in2 "foo] [:in3] 3
;...some code here
end

This procedure has a minimum of one input, a default of three inputs, and an infinite maximum. 		

Logo responds to the TO command by entering procedure definition mode. The prompt character
changes from "?" to ">" and whatever instructions you type become part of the definition until you
type a line containing only the word END. 		

define procname text

309
Workspace Management / Procedure Definition / define

command. Defines a procedure with name " procname " and text " text ". If there is already a
procedure with the same name, the new definition replaces the old one. The text input must be a
list whose members are lists. The first member is a list of inputs; it looks like a TO line but without
the word TO, without the procedure name, and without the colons before input names. In other
words, the members of this first sublist are words for the names of required inputs and lists for the
names of optional or rest inputs. The remaining sublists of the text input make up the body of the
procedure, with one sublist for each instruction line of the body. (There is no END line in the text
input.) It is an error to redefine a primitive procedure unless the variable REDEFP has the value
TRUE. 		

Examples: 		

define "go [[] [fd 100]]
go
cs
define "go [[steps] [fd 300*steps]] ;so go is a "scaled fd"
go .5
go .25
go .125
cs
define "go [[[steps 1]] [fd 300*steps]]
go ;moves the turtle to the upper border, drawing
cs
(go 0.5) ;moves the turtle till half the upper border

Text procname

outputs the text of the procedure named " procname " in the form expected by DEFINE: a list of
lists, the first of which describes the inputs to the procedure and the rest of which are the lines of its
body. The text does not reflect formatting information used when the procedure was defined, such
as continuation lines and extra spaces. 		

Example: 		

310
Workspace Management / Procedure Definition / Text

hex pc ;FF000000 ;-)
Text "hex
 [[num]
 [op intForm :num 8 16]]
 ;-)

fullText procname

outputs a representation of the procedure " procname " in which formatting information is
preserved. If the procedure was defined with TO, EDIT, or LOAD, then the output is a list of
words. Each word represents one entire line of the definition in the form output by READWORD,
including extra spaces and continuation lines. The last member of the output represents the END
line. If the procedure was defined with DEFINE, then the output is a list of lists. If these lists are
printed, one per line, the result will look like a definition using TO. Note: the output from
FULLTEXT is not suitable for use as input to DEFINE! 		

Example: 		

hex pc ;FF000000 ;-)
fullText "hex
 [to\ hex\ \:num \ op\ intForm\ \:num\ 8\ 16 end]
 ;-)

copyDef newname oldname

command. Makes " newname " a procedure identical to " oldname ". The latter may be a primitive.
If " newname " was already defined, its previous definition is lost. If " newname " was already a
primitive, the redefinition is not permitted unless the variable REDEFP has the value TRUE.
Definitions created by COPYDEF are not saved by SAVE; primitives are never saved, and
user-defined procedures created by COPYDEF are buried. (You are likely to be confused if you PO
or POT a procedure defined with COPYDEF because its title line will contain the old name. This is
why it's buried.) 		

Note: dialects of Logo differ as to the order of inputs to COPYDEF. This dialect uses "MAKE

311
Workspace Management / Procedure Definition / copyDef

order," not "NAME order." 		

Example: 		

copyDef "write "print
write 1234 ;1234

312
Workspace Management / Variable Definition

Variable Definition

Variable Definition

• make 312
• name 312
• local 313
• localmake 313
• Thing 314

make varname value
 varname = value

command. Assigns the value " value " to the variable named " varname ", which must be a word.
Variable names are case-insensitive. If a variable with the same name already exists, the value of
that variable is changed. If not, a new global variable is created. 		

Examples: 		

make "a 1234
:a ;1234 ;-)
a=2345
a ;2345 ;-)
a=[Hallo World!]
pr a ;Hallo World!

name value varname					 (library procedure)

command. Same as MAKE but with the inputs in reverse order. 		

Example: 		

313
Workspace Management / Variable Definition / name

name 1234 "a
a ;1234 ;-)

I think one assignment primitive is enough, so I leave name as a library procedure. 		

local varname
local varnamelist
(local varname1 varname2 ...)

command. Accepts as inputs one or more words, or a list of words. A variable is created for each
of these words, with that word as its name. The variables are local to the currently running
procedure. Logo variables follow dynamic scope rules; a variable that is local to a procedure is
available to any subprocedure invoked by that procedure. The variables created by LOCAL have no
initial value; they must be assigned a value (e.g., with MAKE) before the procedure attempts to
read their value. 		

Examples: 		

to proc
 local [a b c]
 a=1234
 b=[Hallo World!]
 c={1 2 3}
 (pr a b c)
end
;proc defined
proc ;1234 Hallo World! {1 2 3}
a ; I don't know how to a
b ; I don't know how to b
c ; I don't know how to c

localmake varname value				 (library procedure)

command. Makes the named variable local, like LOCAL, and assigns it the given value, like

314
Workspace Management / Variable Definition / localmake

MAKE. 		

Example: 		

to proc
 localmake "a 1234
 pr a
end
;proc defined
proc ;1234
a ; I don't know how to a

I think it's better to separate the declaration from the initialization and use local and make rather
than localmake. 		

Because of this I don't make localmake a primitive. 		

Thing varname
:quoted_varname		

outputs the value of the variable whose name is the input. If there is more than one such variable,
the innermost local variable of that name is chosen. The colon notation is an abbreviation not for
THING but for the combination
 thing "
so that
 :FOO means THING "FOO.
Examples: 		

a=1234
Thing "a ;1234 ;-) here Thing " is not really neccessary.
ab=[Hallo World!]
Thing Word "a "b ;[Hallo World!] ;-)
;this second example is the strength of thing!

315
Workspace Management / Property Lists

Property Lists

...can now fully be replaced by Table, using Item, setItem and removeItem. The PropertyList
functions are left here for compatibility only. 		

Note: Names of property lists are always case-insensitive. Names of individual properties are
case-sensitive or case-insensitive depending on the value of CaseIgnoredP, which is true by default.
		

Examples for PropertyList usage: 		

pProp "myplist "a 1234
pProp "myplist "b 5678
PList "myplist ;[b 5678 a 1234] ;-)
gProp "myplist "a ;1234 ;-)
remProp "myplist "a
PList "myplist ;[b 5678] ;-)

Property Lists

• putProperty 315, pProp 315
• getProperty 316, gProp 316
• removeProperty 316, remProp 316
• PropertyList 316, PList 316

putProperty plistname propname value
pProp plistname propname value

command. Adds a property to the " plistname " property list with name " propname " and value "
value ". 		

Example: 		

316
Workspace Management / Property Lists / putProperty

pProp "myplist "a 1234
PList "myplist ;[a 1234] ;-)

getProperty plistname propname
gProp plistname propname

outputs the value of the " propname " property in the " plistname " property list, or the empty list if
there is no such property. 		

Example: 		

pProp "myplist "a 1234
gProp "myplist "a ;1234 ;-)

removeProperty plistname propname
remProp plistname propname

command. Removes the property named " propname " from the property list named " plistname ".
		

Example: 		

pProp "myplist "a 1234
remProp "myplist "a
PList "myplist ;[] ;-)

PropertyList plistname
PList plistname

outputs a list whose odd-numbered members are the names, and whose even-numbered members
are the values, of the properties in the property list named " plistname ". The output is a copy of the

317
Workspace Management / Property Lists / PropertyList

actual property list; changing properties later will not magically change a list output earlier by
PLIST. 		

Example: 		

pProp "myplist "a 1234
PList "myplist ;[a 1234] ;-)

318
Workspace Management / Workspace Predicates

Workspace Predicates

...ask boolean questions on root table entries, i.e. if something is a procedure, a primitive or a
variable. 		

Workspace Predicates

• ProcedureP 318
• PrimitiveP 318
• definedP 319
• NameP 319
• CaseIgnoredP 319

ProcedureP name
Procedure? name

outputs TRUE if the input is the name of a procedure. Logo does not know a procedure which has
not yet been loaded. It only knows the primitives at startup. 		

Examples: 		

Procedure? "fd ;true ;-)
Procedure? "tree ;false ;-)
tree
Procedure? "tree ;true ;-)

PrimitiveP name
Primitive? name

outputs TRUE if the input is the name of a primitive procedure (one built into Logo). Note that
some of the procedures described in this document are library procedures, not primitives. 		

Examples: 		

319
Workspace Management / Workspace Predicates / PrimitiveP

Primitive? "fd ;true ;-)
tree
Primitive? "tree ;false ;-)

definedP name
defined? name

outputs TRUE if the input is the name of a user-defined procedure, including a library procedure.
(However, Logo does not know about a library procedure until that procedure has been invoked.) 		

Examples: 		

defined? "fd ;false ;-)
defined? "tree ;false ;-)
tree
defined? "tree ;true ;-)

NameP name
Name? name

outputs TRUE if the input is the name of a variable. 		

Examples: 		

make "a 1234
Name? "a ;true ;-)
b=[something]
Name? "b ;true ;-)

CaseIgnoredP
CaseIgnored?

320
Workspace Management / Workspace Predicates / CaseIgnoredP

if TRUE, indicates that lower case and upper case letters should be considered equal by EQUALP,
BEFOREP, MEMBERP, etc. Logo initially sets this internal state TRUE. 		

Example: 		

setCaseIgnored false
CaseIgnored? ;false ;-)
bUtFirst "Hallo ; I don't know how to bUtFirst
butFirst "World ;orld ;-)
butfirst [so so] ;[so] ;-)

321
Workspace Management / Workspace Queries

Workspace Queries

...ask questions on the root table and its members. 		

Note: All procedures whose input is indicated as "contentslist" will accept a single word (taken as a
procedure name), a list of words (taken as names of procedures), or a list of three lists as described
under the CONTENTS command. 		

Workspace Queries

• Contents 321
• buried 322
• traced 322
• Primitives 323
• Procedures 323
• Names 323
• PropertyLists 324, PLists 324
• namelist 324
• pllist 325
• Arity 325
• Nodes 326

Contents

outputs a "contents list," i.e., a list of three lists containing names of defined procedures, variables,
and property lists respectively. This list includes all unburied named items in the workspace. 		

Examples: 		

322
Workspace Management / Workspace Queries / Contents

tree
contents ;[[tree tree2][][]] ;-)
a=1234
contents ;[[tree tree2][a][]] ;-)
pprop "b "greetings [Hallo World]
contents ;[[tree tree2][a][b]] ;-)
reset
contents ;[[][][]] ;-)

buried

outputs a contents list including all buried named items in the workspace. 		

Examples: 		

buried
 [[]
 [-1 0 1 determinant false floatmax intmax pi true]
 []
]
 ;-)
foreach [Hallo World] [pr ?]
Hallo
World
buried
 [[?rest foreach foreach1 foreach_done]
 [-1 0 1 determinant false floatmax intmax pi true]
 []
]
 ;-)

traced

outputs a contents list including all traced named items in the workspace. 		

323
Workspace Management / Workspace Queries / traced

Example: 		

trace "fd
traced
 [[fd]
 []
 []
]
 ;-)
fd 100
(fd 100)
fd stops

Primitives

outputs a list of the names of all primitives. 		

Examples: 		

show primitives ;then you'll see the long list of primitives
count primitives ;970 ;-)
count remdup lowercase primitives ;551 ;-)

Procedures

outputs a list of the names of all unburied user-defined procedures in the workspace. Note that this
is a list of names, not a contents list. (However, procedures that require a contents list as input will
accept this list.) 		

Examples: 		

Procedures ;[] ;-)
tree
Procedures ;[tree tree2] ;-)

324
Workspace Management / Workspace Queries / Names

Names

outputs a contents list consisting of an empty list (indicating no procedure names) followed by a list
of all unburied variable names in the workspace. 		

Example: 		

a=1234
b=[Hallo World!]
Names ;[[][a b]] ;-)

PropertyLists
PLists

outputs a contents list consisting of two empty lists (indicating no procedures or variables) followed
by a list of all unburied property lists in the workspace. 		

Example: 		

pProp "myplist "a 1234
pProp "myplist2 "a 4321
PLists ;[[][][myplist myplist2]] ;-)

namelist varname					 (library procedure)
namelist varnamelist

outputs a contents list consisting of an empty list followed by a list of the name or names given as
input. This is useful in conjunction with workspace control procedures that require a contents list as
input. 		

Examples: 		

325
Workspace Management / Workspace Queries / namelist

namelist "a
 [[]
 [a]
]
 ;-)
namelist [a b c]
 [[]
 [a b c]
]
 ;-)

pllist plname						 (library procedure)
pllist plnamelist

outputs a contents list consisting of two empty lists followed by a list of the name or names given as
input. This is useful in conjunction with workspace control procedures that require a contents list as
input. 		

Examples: 		

pllist "a
 [[]
 []
 [a]
]
 ;-)
pllist [a b c]
 [[]
 []
 [a b c]
]
 ;-)

Arity procedurename

326
Workspace Management / Workspace Queries / Arity

outputs a list of four numbers: the minimum, default, and maximum number of inputs and the
priority for the procedure whose name is the input. It is an error if there is no such procedure. A
maximum of -1 means that the number of inputs is unlimited. 		

Examples: 		

arity "fd ;[1 1 1 10] ;-)
arity "item ;[2 2 3 10] ;-)
arity "sum ;[0 2 -1 10] ;-)
arity "\+ ;[1 1 1 12] ;-)
arity "* ;[1 1 1 13] ;-)
arity "\^ ;[1 1 1 14] ;-)
arity "\-\- ;[1 1 1 16] ;-)

Nodes

outputs a list of two numbers. The first represents the number of nodes of memory currently in use.
The second shows the maximum number of nodes that have been in use at any time since the last
invocation of NODES. (A node is a small block of computer memory as used by Logo. Each
number uses one node. Each non-numeric word uses one node, plus some non-node memory for the
characters in the word. Each array takes one node, plus some non-node memory, as well as the
memory required by its elements. Each list requires one node per element, as well as the memory
within the elements.) 		

If you want to track the memory use of an algorithm, it is best if you invoke GC at the beginning of
each iteration, since otherwise the maximum will include storage that is unused but not yet
collected. 		

Examples: 		

327
Workspace Management / Workspace Queries / Nodes

Nodes ;[3105 3471] ;-)
Nodes ;[3105 3125] ;-)
a=1234
Nodes ;[3108 3143] ;-)
Nodes ;[3108 3128] ;-)
erase [[][a]]
Nodes ;[3105 3145] ;-)
Nodes ;[3105 3125] ;-)

328
Workspace Management / Inspection

Inspection

These are print out functions with many abbreviations. 		

Inspection

• printOut 328, pO 328
• poall 329
• pops 329
• pons 330
• popls 330
• pon 331
• popl 331
• printOutTitles 332, poT 332
• pots 332

printOut contentslist
pO contentslist

command. Prints to the write stream the definitions of all procedures, variables, and property lists
named in the input contents list. 		

Example: 		

a=1234
to t
 pr a
end
;t defined
po [[t][a]]

which will print: 		

to t
 pr a
end

329
Workspace Management / Inspection / printOut

Make "a 1234		

poall							(library procedure)

command. Prints all unburied definitions in the workspace. Abbreviates PO CONTENTS. 		

Example: 		

a=1234
to t
 pr a
end
;t defined
po contents

which will print: 		

to t
 pr a
end

Make "a 1234		

pops							(library procedure)

command. Prints the definitions of all unburied procedures in the workspace. Abbreviates PO
PROCEDURES. 		

Example: 		

to t
 pr 1234
end
t defined
pops

330
Workspace Management / Inspection / pops

which will print: 		

to t
 pr 1234
end

pons							(library procedure)

command. Prints the definitions of all unburied variables in the workspace. Abbreviates PO
NAMES. 		

Example: 		

a=1234
b=[Hallo World!]
pons

which will print: 		

Make "a 1234
Make "b [Hallo World!]

popls							(library procedure)

command. Prints the contents of all unburied property lists in the workspace. Abbreviates PO
PLISTS. 		

Example: 		

pProp "pa "a 1234
pProp "pb "b [Hallo]
pProp "pf "d "Hallo
popls

331
Workspace Management / Inspection / popls

which will print: 		

pProp "pa "a 1234
pProp "pb "b [Hallo]
pProp "pf "d "hallo

pon varname						 (library procedure)
pon varnamelist

command. Prints the definitions of the named variable(s). Abbreviates PO NAMELIST
varname(list). 		

Examples: 		

a=1234
b=[Hallo World!]
pon "a

will print: 		

Make "a 1234		

pon [a b]		
will print: 		

Make "a 1234
Make "b [Hallo World!]

popl plname						 (library procedure)
popl plnamelist

command. Prints the definitions of the named property list(s). Abbreviates PO PLLIST
plname(list). 		

Examples: 		

332
Workspace Management / Inspection / popl

pProp "myplist "a 1234
pProp "myplistb "b [Hallo World!]
popl "myplist

will print: 		

pProp "myplist "a 1234		

popl [myplist myplistb]		
will print: 		

pProp "myplist "a 1234
pProp "myplistb "b [Hallo World!]

printOutTitles contentslist
poT contentslist

command. Prints the title lines of the named procedures and the definitions of the named variables
and property lists. For property lists, the entire list is shown on one line instead of as a series of
PPROP instructions as in PO. 		

Example: 		

a=1234
to t
 pr 5
end
;t defined
pProp "myplist "b 4321
pot [[t][a][myplist]]

will print: 		

to t
Make "a 1234
PList "myplist=b 4321

333
Workspace Management / Inspection / pots

pots							(library procedure)

command. Prints the title lines of all unburied procedures in the workspace. Abbreviates POT
PROCEDURES. 		

Example: 		

tree
pots

will print: 		

to tree [level 7][size 100]
to tree2 level size

334
Workspace Management / Workspace Control

Workspace Control

Workspace Control

• setCaseIgnored 334
• bury 335
• buryall 335
• buryname 336
• unbury 336
• unburyall 336
• unburyname 337
• trace 337
• traceall 338
• untrace 338
• step 338
• stepall 339
• unstep 339
• save 340
• savel 340
• load 341
• help 342
• h 343
• GC 344
• shrinkStacks 345
• setStackNoisy 345

setCaseIgnored bool

Sets the internal state of being case-sensitive. Set it to false if you want to discern upper and lower
case symbols. 		

But be careful: Also the procedure and primitive names are then case-sensitive. 		

There are two case forms of each primitive, one completely lowercase, the other like in the help. 		

335
Workspace Management / Workspace Control / setCaseIgnored

Example: 		

setCaseIgnored false
clearscreen ;works!
clearScreen ;works!
ClearScreen
; I don't know how to ClearScreen

bury contentslist

command. Buries the procedures, variables, and property lists named in the input. A buried item is
not included in the lists output by CONTENTS, PROCEDURES, VARIABLES, and PLISTS, but is
included in the list output by BURIED. By implication, buried things are not printed by POALL or
saved by SAVE. 		

Example: 		

to t
end
;t defined
Contents ;[[t][][]] ;-)
bury "t
Contents ;[[][][]] ;-)
buried
 [[t]
 [-1 0 1 determinant false floatmax intmax pi true]
 []
]
 ;-)

buryall						(library procedure)

command. Abbreviates BURY CONTENTS. 		

336
Workspace Management / Workspace Control / buryall

Example: 		

a=1234
tree
buryall
Contents ;[[][][]] ;-)
buried
 [[buryall tree tree2]
 [-1 0 1 a determinant false floatmax intmax pi true]
 []
]
 ;-)

buryname varname					 (library procedure)
buryname varnamelist

command. Abbreviates BURY NAMELIST varname(list). 		

unbury contentslist

command. Unburies the procedures, variables, and property lists named in the input. That is, the
named items will be returned to view in CONTENTS, etc. 		

Example: 		

a=1234
bury namelist "a
Contents ;[[][][]] ;-)
unbury namelist "a
Contents ;[[][a][]] ;-)

unburyall						(library procedure)

337
Workspace Management / Workspace Control / unburyall

command. Abbreviates UNBURY BURIED. 		

Example: 		

a=1234
bury namelist "a
unburyall
Contents ;[[namelist unburyall][a][]] ;-)

unburyname varname					 (library procedure)
unburyname varnamelist

command. Abbreviates UNBURY NAMELIST varname(list). 		

Example: 		

a=1234
buryname "a
buried ;[[buryname namelist][a][]] ;-)
unburyname "a
Contents ;[[][a][]] ;-)

trace contentslist

command. Marks the named items for tracing. A message is printed whenever a traced procedure is
invoked, giving the actual input values, and whenever a traced procedure STOPs or OUTPUTs. A
message is printed whenever a new value is assigned to a traced variable using MAKE. A message
is printed whenever a new property is given to a traced property list using PPROP. 		

Examples: 		

a=1234
trace namelist "a
a=4321; Make "a 4321

338
Workspace Management / Workspace Control / trace

load "tree.lg
trace "tree
tree

The second example will print a quite long transcript of tree invokations. 		

traceall						(library procedure)

command. Abbreviates TRACE CONTENTS. 		

Example: 		

load "am.lg
traceall
am

will print a long transcript of the asteroid miner game. 		

untrace contentslist

command. Turns off tracing for the named items. 		

Example: 		

trace namelist "a
a=1234
Make "a 1234
untrace namelist "a
a=4321

step contentslist

339
Workspace Management / Workspace Control / step

command. Marks the named items for stepping. Whenever a stepped procedure is invoked, each
instruction line in the procedure body is printed before being executed, and Logo waits for the user
to type a newline at the terminal. A message is printed whenever a stepped variable name is
"shadowed" because a local variable of the same name is created either as a procedure input or by
the LOCAL command. 		

Examples: 		

step namelist "a
a=1234
to t
 local "a
 a=4321
 pr a
end
t defined
step "t
t
local "a >>>
; a shadowed by local in procedure call in t line 1

= "a 4321 >>>
pr :a >>>
4321

stepall						(library procedure)

command. Abbreviates STEP CONTENTS. 		

Example: 		

load "bounce3.lg
stepall
bounce3

340
Workspace Management / Workspace Control / unstep

unstep contentslist

command. Turns off stepping for the named items. 		

Example: 		

load "bounce3.lg
stepall
unstep Contents
bounce3

save filename

command. Saves the definitions of all unburied procedures, variables, and property lists in the
named file. Equivalent to
 poall
 setwriter :oldwriter
 close : filename
end

Example: 		

load "si.lg
save "temp.txt

Now temp.txt contains the same definitions as si.lg. 		

savel contentslist filename				 (library procedure)

command. Saves the definitions of the procedures, variables, and property lists specified by "
contentslist " to the file named "filename". 		

Example: 		

341
Workspace Management / Workspace Control / savel

load "si.lg
contents ;[[fractal image_right si triangle][][]] ;-)
savel "triangle "temp.txt

Now temp.txt contains the definition of triangle. 		

load filename

command. Reads instructions from the named file and executes them. The file can include
procedure definitions with TO, and these are accepted even if a procedure by the same name
already exists. If the file assigns a list value to a variable named STARTUP, then that list is run as
an instructionlist after the file is loaded. 		

Example: 		

load "bounce3.lg
pots

will print: 		

342
Workspace Management / Workspace Control / load

to ballinit
to bat
to batinit
to bounce3
to circ size
to courtinit
to drawBall
to drawExplosions
to explosioninit
to fractal size level
to image_right tilt
to moveBall
to moveBat
to myfrbox size
to noball
to nobat
to si
to smallfrbox size size2
to stonesinit
to triangle

help name
(help)

command. Prints information from the reference manual about the primitive procedure named by
the input. With no input, lists all the primitives about which help is available. If there is an
environment variable ALOGOHELP, then its value is taken as the directory in which to look for
help files, instead of the default help directory. 		

Exceptionally, the HELP command can be used without its default input and without parentheses
provided that nothing follows it on the instruction line. 		

Example: 		

help [word]		
will print: 		

343
Workspace Management / Workspace Control / help

Help Contents / Data Structure Primitives / Constructors / Word
Word word1 word2
(Word word1 word2 word3 ...)

outputs a word formed by concatenating its inputs.

Examples:

 show word "hal "lo ;hallo
 show (word [wor ld]) ;wor ld
 show (word {a b c}) ;{a b c}
 show word "12 "34 ;1234

next: List

h listOfSymbols					 (library procedure)
h symbolWord

searches the help pages for matches of one or more of the symbols in the listOfSymbols or the
symbolWord and either opens a web browser showing that topic or prints out h commands nearly
matching the listOfSymbols. 		

Examples: 		

344
Workspace Management / Workspace Control / h

h [graphic]
Loading help index file c:\aucblogo\help\indexarr.txt ...
I don`t know " graphic " directly, therefore I`m searching the
semantics now...
h "bg ; 789
h "loadpic ; 789
h "clearscreen ; 789
h "savepic ; 938
h "clean ; 938
h "right ; 938
h "refresh ; 1154
h "pc ; 1154
h "label ; 1154
h "background ; 1218
h "not ; 1875
h "epspict ; 2182
h "turtle-motion-queries ; 3750
h "fillrect ; 3750
h "hsb ; 3750
h "turtle-&-window-queries ; 3750
h "line ; 3750
h "turtle-&-window-control ; 3750
h "moveline ; 3750
h "rgb ; 3750
h "movepixel ; 3750
h "rergb ; 3750
h "pen-queries ; 3750
h "projection-matrix ; 3750
h "pictures ; 3750
h "pen-&-background-control ; 4056
h "turtle-motion ; 4125
h "graphics ; 5536
h "setpixel ; 5893
h "direct-graphics ; 8750

GC
(GC anything)

345
Workspace Management / Workspace Control / GC

command. Runs the garbage collector, reclaiming unused nodes. Logo does this when necessary
anyway, but you may want to use this command to control exactly when Logo does it. In particular,
the numbers output by the NODES operation will not be very meaningful unless garbage has been
collected. Another reason to use GC is that a garbage collection takes a noticeable fraction of a
second, and you may want to schedule collections for times before or after some time-critical
animation. If invoked with an input (of any value), GC runs a full garbage collection, including
GCTWA (Garbage Collect Truly Worthless Atoms, which means that it removes from Logo's
memory words that used to be procedure or variable names but aren't any more); without an input,
GC does a generational garbage collection, which means that only recently created nodes are
examined (The latter is usually good enough). 		

Example: 		

(gc true)		

shrinkStacks

command to shrink all stacks of aUCBLogo to the least power of 2 greater than PAGE_SIZE
(0x100) and the number of elements on that respective stack. 		

Example: 		

to teststack
 clearText
 fillstack 1000000
end
to fillstack n
 if n > 0 [fillstack n-1]
 n=n
end
teststack
shrinkStacks

setStackNoisy state

346
Workspace Management / Workspace Control / setStackNoisy

command to set the state of the "noisy" flag for the Stacks. If state is true, the Stacks will print
their size when they grow or shrink. 		

Example: 		

setStackNoisy true		

347
Workspace Management / Editing

Editing

...commands call an external editor with either a temporary file (edit) or a specified file (editFile).
And there are lots of abbreviations. 		

But probably you won't need those commands if you edit your programs in an external editor like
Crimson Editor. If you have a program x.lg and a procedure x in x.lg, then you can run x by calling
"logo.exe x.lg". Such a command you can assign to a hotkey like F9 in you editor and then
debugging is quite more comfortable than using edall. One more advantage on using "logo.exe x.lg"
rather than edall is that the sequence of your procedures does not change. 		

Editing

• edit 347, ed 347
• editFile 348
• edall 348, e 348
• edps 348
• edns 348
• edpls 349
• edn 349
• edpl 349

edit contentslist
ed contentslist
(edit)
(ed)

command. If invoked with an input, EDIT writes the definitions of the named items into a
temporary file and edits that file, using your favorite editor as determined by the AEDITOR
environment variable. If you don't have an AEDITOR variable, edits the definitions using the
internal editor. If invoked without an input, EDIT edits the same file left over from a previous EDIT
or EDITFILE instruction. When you leave the editor, Logo reads the revised definitions and
modifies the workspace accordingly. It is not an error if the input includes names for which there is
no previous definition. 		

If there is an environment variable called ATEMP, then Logo uses its value as the directory in
which to write the temporary file used for editing. 		

348
Workspace Management / Editing / edit

Exceptionally, the EDIT command can be used without its default input and without parentheses
provided that nothing follows it on the instruction line. 		

Example: 		

si ;227.375
ed "si

editFile filename

command. Starts the Logo editor, like EDIT, but instead of editing a temporary file it edits the file
specified by the input. When you leave the editor, Logo reads the revised file, as for EDIT.
EDITFILE also remembers the filename , so that a subsequent EDIT command with no input will
re-edit the same file. 		

EDITFILE is intended as an alternative to LOAD and SAVE. You can maintain a workspace file
yourself, controlling the order in which definitions appear, maintaining comments in the file, and so
on. 		

Example: 		

editfile "si.lg		

edall							(library procedure)
e

command. Abbreviates EDIT CONTENTS. 		

edps							(library procedure)

command. Abbreviates EDIT PROCEDURES. 		

349
Workspace Management / Editing / edns

edns							(library procedure)

command. Abbreviates EDIT NAMES. 		

edpls							(library procedure)

command. Abbreviates EDIT PLISTS. 		

edn varname						 (library procedure)
edn varnamelist

command. Abbreviates EDIT NAMELIST varname(list). 		

edpl plname						 (library procedure)
edpl plnamelist

command. Abbreviates EDIT PLLIST plname(list). 		

350
Workspace Management / Erasing

Erasing

...is often more convenient than exiting logo and start it again. Because of this there is the erase
command and its abbreviations. 		

But don't confuse erase with eraseFile! erase and its abbreviations will only erase something from
the workspace. 		

Erasing

• erase 350, er 350
• eraseAll 350, erAll 350
• eraseProcedures 351, erPs 351
• eraseNames 351, erNs 351
• erasePropertyLists 351, erPLs 351
• ern 351
• erpl 352
• reset 352

erase contentslist
er contentslist

command. Erases from the workspace the procedures, variables, and property lists named in the
input. Primitive procedures may not be erased unless the variable REDEFP has the value TRUE. 		

Example: 		

si ;170.634
Contents ;[[fractal image_right si triangle][t][]] ;-)
er "si
Contents ;[[fractal image_right triangle][t][]] ;-)

eraseAll
erAll

351
Workspace Management / Erasing / eraseAll

command. Erases all unburied procedures, variables, and property lists from the workspace.
Abbreviates ERASE CONTENTS. 		

eraseProcedures
erPs

command. Erases all unburied procedures from the workspace. Abbreviates ERASE
PROCEDURES. 		

eraseNames
erNs

command. Erases all unburied variables from the workspace. Abbreviates ERASE NAMES. 		

erasePropertyLists
erPLs

command. Erases all unburied property lists from the workspace. Abbreviates ERASE PLISTS. 		

ern varname						 (library procedure)
ern varnamelist

command. Erases from the workspace the variable(s) named in the input. Abbreviates ERASE
NAMELIST varname(list). 		

Example: 		

352
Workspace Management / Erasing / ern

a=1234
ern "a
a ; I don't know how to a

erpl plname						 (library procedure)
erpl plnamelist

command. Erases from the workspace the property list(s) named in the input. Abbreviates ERASE
PLLIST plname(list). 		

reset							(library procedure)

command calling erall and several resettings to reset the interpreter to a known state. 		

reset.lg looks now like this: 		

353
Workspace Management / Erasing / reset

to reset
 setCaseIgnored true
 erAll
 clearScreen
 setUpdateGraph true
 setPenColor 0
 setScreenColor 7
 setFloodColor 0
 setPenSize [1 1]
 disableCylinderLines
 enableLineSmooth
 setLabelFont [Times]
 showTurtle
 PenDown
 setLightAmbient rgb 0.1 0.1 0.1
 setLightDiffuse rgb 1 1 1
 unperspective
 refresh
 doubleBuffer
 wrap
 insertMode
end

354
Control Structures

Control Structures

Note: in the following descriptions, an "instructionlist" can be a list or a word. In the latter case, the
word is parsed into list form before it is run. Thus, RUN READWORD or RUN READLIST will
work. The former is slightly preferable because it allows for a continued line (with ~) that includes
a comment (with ;) on the first line. 		

Control Structures

• bye 354
• stop 354
• goTo 355
• Tag 355
• output 356, op 356
• ignore 356, comment 356
• ` 356
• run 357
• runResult 358
• wait 358
• waitMS 359
• waituS 359
• pause 359
• continue 360, co 360
• check 361
• profile 362

bye

command. Exits from Logo; returns to the operating system. 		

stop

command. Ends the running of the procedure in which it appears. Control is returned to the context
in which that procedure was invoked. The stopped procedure does not output a value. 		

355
Control Structures / stop

Example: 		

to t
 forever [if key? [stop]]
 pr [Hallo!]
end
;t defined
t

Then, if you press any key t will stop	and the pr will not be run, because stop immediatly exits the
currently running procedure. 		

goTo word

command. Looks for a Tag command with the same input in the same procedure, and continues
running the procedure from the location of that tag. It is meaningless to use GOTO outside of a
procedure. 		

But be aware, goTo is a rather slow command, as it searches the current procedure until it finds the
tag or till its end (with an error message). 		

Examples: 		

to t
 Tag "one
 pr 1
 goTo "two
 pr 5
 Tag "two
 pr 2
 goTo "one
end
;t defined
t

will print 1 and 2 alternately until you press control-q (stop). 		

356
Control Structures / Tag

Tag quoted_word

command. Does nothing. The input must be a literal word following a quotation mark ("), not the
result of a computation. Tags are used by the GOTO command. 		

output value
op value

command. Ends the running of the procedure in which it appears. That procedure outputs the value
" value " to the context in which it was invoked. Don't be confused: OUTPUT itself is a command,
but the procedure that invokes OUTPUT is an operation. 		

Example: 		

to t
 pr 1
 output [Hallo!]
 pr 2
end
;t defined
show t

will print: 		

1
[Hallo!]

ignore value
comment value (library procedure)

command. Does nothing. Used when an expression is evaluated for a side effect and its actual
value is unimportant. 		

357
Control Structures / `

` list							 (library procedure)

outputs a list equal to its input but with certain substitutions. If a member of the input list is the
word "," (comma) then the following member should be an instructionlist that produces an output
when run. That output value replaces the comma and the instructionlist. If a member of the input list
is the word ",@" (comma atsign) then the following member should be an instructionlist that
outputs a list when run. The members of that list replace the ,@ and the instructionlist. 		

Example: 		

show `[foo baz ,[bf [a b c]] garply ,@[bf [a b c]]]		
will print
 [foo baz [b c] garply b c]

run instructionlist

command or operation. Runs the Logo instructions in the input list; outputs if the list contains an
expression that outputs. 		

Examples: 		

run [pr 1 pr 2 pr 3]		
prints: 		

1
2
3

to a
 pr "a
end
a defined
to b
 pr "b
end
b defined
repeat 10 [run pick [a b]]

358
Control Structures / run

prints something like: 		

a
a
b
b
a
b
a
a
a
a

runResult instructionlist

runs the instructions in the input; outputs an empty list if those instructions produce no output, or a
list whose only member is the output from running the input instructionlist . Useful for inventing
command-or-operation control structures. 		

Example: 		

to t something
 local "result
 make "result runresult something
 if emptyp :result [stop]
 output first :result
end
;t defined
t [1] ;1 ;-)

outputs 1, but 		

t [pr 5] ;5		
does not output anything, but just prints 5. 		

359
Control Structures / wait

wait time

command. Delays further execution for " time " 60ths of a second. Also causes any buffered
characters destined for the terminal to be printed immediately. WAIT 0 can be used to achieve this
buffer flushing without actually waiting. 		

Example: 		

wait 60 ;waits one second		

waitMS milliseconds

command. Delays further execution for milliseconds . 		

Example: 		

waitMS 1000 ;waits one second		

waituS microseconds

command. Delays further execution for microseconds . This command tries to be as exact as
possible, depending on the possibilities of the operating system and the hardware. 		

Example: 		

waituS 10500 ;waits 10.5 milliseconds		

pause

command or operation. Enters an interactive pause. The user is	prompted for instructions, as at
toplevel, but with a prompt that includes the name of the procedure in which PAUSE was invoked.
Local variables of that procedure are available during the pause. PAUSE outputs if the pause is
ended by a CONTINUE with an input. 		

360
Control Structures / pause

If the variable ERRACT exists, and an error condition occurs, the contents of that variable are run
as an instructionlist. Typically ERRACT is given the value [PAUSE] so that an interactive pause
will be entered on the event of an error. This allows the user to check values of local variables at
the time of the error. 		

Typing the key [Pause] will also enter a pause. 		

Example: 		

to t
 forever
 [pause
]
end
;t defined
t ;continue ; Pausing t in line 2...
stop

continue value
co value
(continue)
(co)

command. Ends the current interactive pause, returning to the context of the PAUSE invocation that
began it. If CONTINUE is given an input, that value is used as the output from the PAUSE. If not,
the PAUSE does not output. 		

Exceptionally, the CONTINUE command can be used without its default input and without
parentheses provided that nothing follows it on the instruction line. 		

Examples: 		

361
Control Structures / continue

to t
 pause
 pr 5
end
;t defined
t
continue ; Pausing t in line 2...
;5
to tt
 pr pause
end
;tt defined
tt
continue 1234; Pausing tt in line 1...
;1234

check instructionlist value		 (library procedure)

command which runs the instructionlist and compares the result output by the run with value. It's
good for consistency checking of operations. 		

Example: 		

362
Control Structures / check

to checkplists
 local [ok]
 ok=true
 putProperty "opposite_of "yes "no
 pProp "opposite_of "black "white
 pprop "opposite_of "up "down
 check [getProperty "opposite_of "black] "white
 check [plist "opposite_of] [up down black white yes no]

 removeProperty "opposite_of "black
 check [plist "opposite_of] [up down yes no]

 remProp "opposite_of "yes
 check [plist "opposite_of] [up down]

 pprop "greetings "english "hello
 pprop "greetings "german "hallo
 check [plist "greetings] [german hallo english hello]
 check [plists] [[] [] [greetings opposite_of]]

 remProp "opposite_of "up
 check [plist "opposite_of] []
 check [plists] [[][][greetings]]

 type [\; The Property List functions\]
 ifelse not :ok
 [pr [ARE NOT CORRECT!]
][pr [look OK.]
]
 output :ok
end

profile instructionlist		 (library procedure)

runs the instructionslist after renaming all user procedures and defining caller procedures, which
save the execution time and number of the renamed procedures. These data are showed in a table as
a profile after the run of the instructionlist. 		

363
Control Structures / profile

Example: 		

load "bounce3.lg
profile [bounce3]

364
Conditional execution

Conditional execution

Conditional execution

• if 364
• ifElse 365
• ifTrue 365, ifT 365
• ifFalse 365, ifF 365
• test 366
• case 366
• cond 366
• throw 367
• catch 368
• error 369
• _maybeOutput 369

if tf instructionlist
(if tf instructionlist1 instructionlist2)

command. If the first input has the value TRUE, then IF runs the second input. If the first input has
the value FALSE, then IF does nothing. (If given a third input, IF acts like IFELSE, as described
below.) It is an error if the first input is not either TRUE or FALSE. 		

For compatibility with earlier versions of Logo, if an IF instruction is not enclosed in parentheses,
but the first thing on the instruction line after the second input expression is a literal list (i.e., a list
in square brackets), the IF is treated as if it were IFELSE, but a warning message is given. If this
aberrant IF appears in a procedure body, the warning is	given only the first time the procedure is
invoked in each Logo session. 		

Examples: 		

365
Conditional execution / if

if true [pr true] ;true
if true [true] ;true ;-) (outputs true)
if false [pr false]
if 1==1 [pr true] ;true

ifElse tf instructionlist1 instructionlist2

command or operation. If the first input has the value TRUE, then IFELSE runs the second input.
If the first input has the value FALSE, then IFELSE runs the third input. IFELSE outputs a value if
the instructionlist contains an expression that outputs a value. 		

Examples: 		

ifElse true [pr true][pr false] ;true
ifElse false [pr true][pr false] ;false

ifTrue instructionlist
ifT instructionlist

command. Runs its input if the most recent TEST instruction had a TRUE input. The TEST must
have been in the same procedure or a superprocedure. 		

Example: 		

to t
 test true
 iftrue [pr true]
end
;t defined
t ;true

ifFalse instructionlist

366
Conditional execution / ifFalse

ifF instructionlist

command. Runs its input if the most recent TEST instruction had a FALSE input. The TEST must
have been in the same procedure or a superprocedure. 		

Example: 		

to t
 test false
 iffalse [pr false]
end
;t defined
t ;false

test tf

command. Remembers its input, which must be TRUE or FALSE, for use by later IFTRUE or
IFFALSE instructions. The effect of TEST is local to the procedure in which it is used; any
corresponding IFTRUE or IFFALSE must be in the same procedure or a subprocedure. 		

				result case value clist

outputs as result the run butfirst entry of the list of the clist list which has the entry value as its
first element. If the first entry of a clist sublist is else then if no previous condition is fullfilled the
corresponding rest of that sublist gets executed. 		

Example: 		

case 2 [[1 "a] [2 "b] [3 "c]] ;b ;-)
case 2 [[1 "a][else "b]] ;b ;-)
case 2 [[1 pr "a] [[(Cos 0)+Cos 0] pr "b] [else pr
"els]] ;b

367
Conditional execution / cond

				result cond clist				 (library procedure)

command or operation. clist is a list of [condition instructions] lists. result is the value which
instructions output. But don't use the logo word output in instructions because that would end the
cond caller. 		

Example: 		

cond [[false 1] [true 2] [else 3]] ;2 ;-)
cond [[1==2 1234][3==3 4321][else [Hallo]]] ;4321 ;-)

throw tag
(throw tag value)

command. Must be used within the scope of a CATCH with an equal tag . Ends the running of the
instructionlist of the CATCH. If THROW is used with only one input, the corresponding CATCH
does not output a value . If THROW is used with two inputs, the second provides an output for the
CATCH.
 THROW "TOPLEVEL
can be used to terminate all running procedures and interactive pauses, and return to the toplevel
instruction prompt. Typing the system interrupt character [Ctrl-Pause] has the same effect.
 THROW "ERROR
can be used to generate an error condition. If the error is not caught, it prints a message (THROW
"ERROR) with the usual indication of where the error (in this case the THROW) occurred. If a
second input is used along with a tag of ERROR, that second input is used as the text of the error
message instead of the standard message. Also, in this case, the location indicated for the error will
be not the location of the THROW, but the location where the procedure containing the THROW
was invoked. This allows user-defined procedures to generate error messages as if they were
primitives. Note: in this case the corresponding
 CATCH "ERROR,
if any, does not output, since the second input to THROW is not considered a return value .
 THROW "SYSTEM
immediately leaves Logo, returning to the operating system, without printing the usual parting
message and without deleting any editor temporary file written by EDIT. 		

Example: 		

368
Conditional execution / throw

to t
 catch "Hallo
 [pr 1
 throw "Hallo
 pr 2
]
 pr 3
end
;t defined
t
;1
;3

catch tag instructionlist

command or operation. Runs its second input. Outputs if that instructionlist outputs. If, while
running the instructionlist , a THROW instruction is executed with a tag equal to the first input
(case-insensitive comparison), then the running of the instructionlist is terminated immediately. In
this case the CATCH outputs if a value input is given to THROW. The tag must be a word. 		

If the tag is the word ERROR, then any error condition that arises during the running of the
instructionlist has the effect of
 THROW "ERROR
instead of printing an error message and returning to toplevel. The CATCH does not output if an
error is caught. Also, during the running of the instructionlist , the variable ERRACT is
temporarily unbound. (If there is an error while ERRACT has a value, that value is taken as an
instructionlist to be run after printing the error message. Typically the value of ERRACT, if any, is
the list [PAUSE].) 		

Example: 		

369
Conditional execution / catch

to t
 output catch "Hallo
 [pr 1
 (throw "Hallo 1234)
 pr 2
]
 pr 3
end
;t defined
t
;1
;1234 ;-)

error

outputs a list describing the error just caught, if any. If there was not an error caught since the last
use of ERROR, the empty list will be output. The error list contains four members: an integer code
corresponding to the type of error, the text of the error message, the name of the procedure in which
the error occurred, and the instruction line on which the error occurred. 		

Example: 		

to t
 pr 1
 catch "error
 [asdfsfg
]
 show error
end
;t defined
t
;1
;[13 [; I don't know how to asdfsfg] t 3]

_maybeOutput value					 (special form)

370
Conditional execution / _maybeOutput

works like OUTPUT except that the expression that provides the input value might not, in fact,
output a value, in which case the effect is like STOP. This is intended for use in control structure
definitions, for cases in which you don't know whether or not some expression produces a value. 		

Example: 		

to invoke :function [:inputs] 2
 _maybeOutput apply :function :inputs
end

(invoke "print "a "b "c) ;a b c
print (invoke "word "a "b "c) ;abc

This is an alternative to RUNRESULT. It's fast and easy to use, at the cost of being an exception to
Logo's evaluation rules. (Ordinarily, it should be an error if the expression that's supposed to
provide an input to something doesn't have a value.) 		

371
Loops

Loops

Loops

• repeat 371
• repeatCount 371, repCount 371
• forever 372
• for 372
• while 373
• until 373
• do_while 374
• do_until 374
• break 374
• continueLoop 375

repeat num instructionlist

command. Runs the instructionList repeatedly, num times. 		

Example: 		

repeat 4
[fd 100 rt 90
 pr repCount
]

repeatCount
repCount

outputs the repetition count of the innermost current REPEAT, starting from 1. If no REPEAT is
active, outputs 0. 		

372
Loops / repeatCount

Example: 		

show repCount ;0
repeat 4
[print repCount ;1 2 3 4
]
show repCount ;0

forever instructionList

command. Runs the instructionList repeatedly, infinite times. 		

Example: 		

forever
[print repcount
]

for forcontrol instructionlist

command. The first input must be a list containing three or four members: 		

(1) a word, which will be used as the name of a local variable; 		

(2) a word or list that will be evaluated as by RUN to determine a number, the starting value of the
variable; 		

(3) a word or list that will be evaluated to determine a number, the limit value of the variable; 		

(4) an optional word or list that will be evaluated to determine the step size. If the fourth member is
missing, the step size will be 1 or -1 depending on whether the limit value is	greater than or less
than the starting value, respectively. 		

The second input is an instructionlist . 		

373
Loops / for

The effect of FOR is to run that instructionlist repeatedly, assigning a new value to the control
variable (the one named by the first member of the forcontrol list) each time. First the starting
value is assigned to the control variable. Then the value is compared to the limit value. FOR is
complete when the sign of (current - limit) is the same as the sign of the step size. (If no explicit
step size is provided, the instructionlist is always run at least once. An explicit step size can lead to
a zero-trip FOR, e.g., FOR [I 1 0 1] ...) Otherwise, the instructionlist is run, then the step is added
to the current value of the control variable and FOR returns to the comparison step. 		

Examples: 		

for [i 2 7 1.5] [print :i]
;2
;3.5
;5
;6.5

for [i [cos 0] 3+1][pr i]
;1
;2
;3
;4

while tfexpression instructionlist

command. Repeatedly evaluates the " instructionlist " as long as the evaluated " tfexpression "
remains TRUE. Evaluates the first input first, so the " instructionlist " may never be run at all. The "
tfexpression " must be an expressionlist whose value when evaluated is TRUE or FALSE. 		

While is good if you don't know before the loop	how many times the loop should execute, but it's a
little bit slower than repeat. 		

Examples: 		

a=Int 0 while [a<1000000] [a+=1] pr a ;1000000
while [not key?][pr repcount]

374
Loops / until

until tfexpression instructionlist

command. Repeatedly evaluates the " instructionlist " as long as the evaluated " tfexpression "
remains FALSE. Evaluates the first input first, so the " instructionlist " may never be run at all. The
" tfexpression " must be an expressionlist whose value when evaluated is TRUE or FALSE. 		

Examples: 		

until [true][pr repcount] ;does nothing
until [key?][pr repcount] ;prints numbers until a key is
pressed

do_while instructionlist tfexpression

command. Repeatedly evaluates the " instructionlist " as long as the evaluated " tfexpression "
remains TRUE. Evaluates the first input first, so the " instructionlist " is always run at least once.
The " tfexpression " must be an expressionlist whose value when evaluated is TRUE or FALSE. 		

Examples: 		

do_while [pr repcount][false] ;1
do_while [pr repcount][repcount < 3] ;1 2 3

do_until instructionlist tfexpression

command. Repeatedly evaluates the " instructionlist " as long as the evaluated " tfexpression "
remains FALSE. Evaluates the first input first, so the " instructionlist " is always run at least once.
The " tfexpression " must be an expressionlist whose value when evaluated is TRUE or FALSE. 		

Examples: 		

do_until [pr repcount][repcount > 2] ;1 2 3
do_until [pr repcount][key?]

375
Loops / break

break

command which stops the currently executing loop immediately and continues execution behind the
loop. 		

Examples: 		

repeat 10 [pr # if #==5 [break] pr "so]
while [# < 10][pr # if #==5 [break] pr "so]
until [# >= 10][pr # if #==5 [break] pr "so]
do_while [pr # if #==5 [break] pr "so][# < 10]
do_until [pr # if #==5 [break] pr "so][# >= 10]
for [i 1 10][pr i if i==5 [break] pr "so]
for [i 1.1 10.1][pr i if i==5.1 [break] pr "so]
foreach [1 2 3 4 5 6 7 8 9 10][pr # if #==5 [break] pr "so]

continueLoop

command which continues the currently executing loop at the beginning of the loop body while
incrementing the repcount. 		

Examples: 		

repeat 10 [pr # if #==5 [continueLoop] pr "so]
while [# < 10][pr # if #==5 [continueLoop] pr "so]
until [# >= 10][pr # if #==5 [continueLoop] pr "so]
do_while [pr # if #==5 [continueLoop] pr "so][# < 10]
do_until [pr # if #==5 [continueLoop] pr "so][# >= 10]
for [i 1 10][pr i if i==5 [continueLoop] pr "so]
for [i 1.1 10.1][pr i if i==5.1 [continueLoop] pr "so]
foreach [1 2 3 4 5 6 7 8 9 10][pr # if #==5 [continueLoop] pr
"so]

376
Template Based Iteration

Template Based Iteration

The procedures in this section are iteration tools based on the idea of a "template." This is a
generalization of an instruction list or an	expression list in which "slots" are provided for the tool to
insert varying data. Four different forms of template can be used. 		

The most commonly used form for a template is "explicit-slot" form, or "question mark" form. 		

Example: 		

show map [? * ?] [2 3 4 5] ;[4 9 16 25]		
In this example, the MAP tool evaluated the template [? * ?] repeatedly, with each of the members
of the data list [2 3 4 5] substituted in turn for the question marks. The same value was used for
every question mark	in a given evaluation. Some tools allow for more than one datum to be
substituted in parallel; in these cases the slots are indicated by ?1 for the first datum, ?2 for the
second, and so on: 		

show (map [(word ?1 ?2 ?1)] [a b c] [d e f]) ;[ada beb
cfc]		
If the template wishes to compute the datum number, the form (? 1) is equivalent to ?1, so (? ?1)
means the datum whose number is given in datum number 1. Some tools allow additional slot
designations, as shown in the individual descriptions. 		

The second form of template is the "named-procedure" form. If the template is a word rather than a
list, it is taken as the name of a procedure. That procedure must accept a number of inputs equal to
the number of parallel data slots provided by the tool; the procedure is applied to all of the available
data in order. That is, if data ?1 through ?3 are available, the template "PROC is equivalent to
[PROC ?1 ?2 ?3]. 		

show (map "word [a b c] [d e f]) ;[ad be cf]		

to dotprod :a :b ; vector dot product
 op apply "sum (map "product :a :b)
end

The third form of template is "named-slot" or "lambda" form. This form is indicated by a template
list containing more than one member, whose first member is itself a list. The first member is taken
as a list of names; local variables are created with those names and given the available data in order

377
Template Based Iteration

as their values. The number of names must equal the number of available data. This form is needed
primarily when one iteration tool must be used within the template list of another, and the ? notation
would be ambiguous in the inner template. 		

Example: 		

to matmul :m1 :m2 [:tm2 transpose :m2] ; multiply two matrices
 output map [[row] map [[col] dotprod :row :col] :tm2] :m1
end

The fourth form is "procedure text" form, a variant of lambda form. In this form, the template list
contains at least two members, all of which are lists. This is the form used by the DEFINE and
TEXT primitives, and APPLY accepts it so that the text of a defined procedure can be used as a
template. 		

Note: The fourth form of template is interpreted differently from the others, in that Logo considers
it to be an independent defined procedure for the purposes of OUTPUT and STOP. 		

For example, the following two instructions are identical: 		

show apply [[x] :x+3] [5] ;8
show apply [[x] [output :x+3]] [5] ;8

although the first instruction is in named-slot form and the second is in procedure-text form. The
named-slot form can be understood as telling Logo to evaluate the expression :x+3 in place of the
entire invocation of apply, with the variable x temporarily given the value 5. The procedure-text
form can be understood as invoking the procedure 		

to foo :x
 output :x+3
end

with input 5, but without actually giving the procedure a name. If the use of OUTPUT were
interchanged in these two examples, we'd get errors: 		

print apply [[x] output :x+3] [5]
;Can only use output inside a procedure
print apply [[x] [:x+3]] [5] ;8 ;-)

The named-slot form can be used with STOP or OUTPUT inside a procedure, to stop the enclosing

378
Template Based Iteration

procedure. 		

The following iteration tools are extended versions of the ones in 		

Appendix B of the book
Computer Science Logo Style, Volume 3:
Advanced Topics
by Brian Harvey [MIT Press, 1987].

The extensions are primarily to allow for variable numbers of inputs. 		

Template Based Iteration

• apply 378
• invoke 379
• foreach 379
• map 380
• map_se 381
• filter 382
• find 382
• reduce 383
• crossmap 383
• cascade 384
• cascade2 385
• transfer 385

apply template inputlist

command or operation. Runs the " template ," filling its slots with the members of " inputlist ."
The number of members in " inputlist " must be an acceptable number of slots for " template ." It is
illegal to apply the primitive TO as a template , but anything else is okay. APPLY outputs what "
template " outputs, if anything. 		

Examples: 		

379
Template Based Iteration / apply

show apply [?+?] [1 3 5] ;2
show apply [?1+?2] [1 3 5] ;4
show apply "sum [1 2 3] ;6
show apply [[x] :x+3] [5] ;8
show apply [[x] [output :x+3]] [5] ;8

invoke template input					 (library procedure)
(invoke template input1 input2 ...)

command or operation. Exactly like APPLY except that the inputs are provided as separate
expressions rather than in a list. 		

Example: 		

show (invoke [?1+?2*?3] 1 2 3) ;7		

foreach data template
(foreach data1 data2 ... template)

command. Evaluates the template list repeatedly, once for each member of the data list. If more
than one data list are given, each of them must be the same length (The data inputs can be words,
in which case the template is evaluated once for each character). 		

In a template , the symbol ?REST represents the portion of the data input to the right of the
member currently being used as the ? slot-filler. That is, if the data input is [A B C D E] and the
template is being evaluated with ? replaced by B, then ?REST would be replaced by [C D E]. If
multiple parallel slots are used, then (?REST 1) goes with ?1, etc. 		

In a template , the symbol # represents the position in the data input of the member currently
being used as the ? slot-filler. That is, if the data input is [A B C D E] and the template is being
evaluated with ? replaced by B, then # would be replaced by 2. 		

Examples: 		

380
Template Based Iteration / foreach

foreach [A B C] [(show # ? ?rest)]
;1 A [B C]
;2 B [C]
;3 C []
(foreach [1 2 3][4 5 6] [(show ?1 ?2)])
;1 4
;2 5
;3 6
(foreach [1 2 3][4 5 6] [[a b] (show a b)])
;1 4
;2 5
;3 6
(foreach [1 2 3][4 5 6] [[a b] [(show a b)]])
;1 4
;2 5
;3 6
foreach "Hallo [show ?]
;h
;a
;l
;l
;o
foreach [Abc Def Ghi] [foreach ? [(show # ? ?rest)]]
;1 A bc
;2 b c
;3 c
;1 D ef
;2 e f
;3 f
;1 G hi
;2 h i
;3 i

map template data					 (library procedure)
(map template data1 data2 ...)

outputs a word or list, depending on the type of the data input, of the same length as that data input.

381
Template Based Iteration / map

(If more than one data input are given, the output is of the same type as data1 .) Each member of
the output is the result of evaluating the template list, filling the slots with the corresponding
member(s) of the data input(s). (All data inputs must be the same length.) In the case of a word
output, the results of the template evaluation must be words, and they are concatenated with
WORD. 		

In a template , the symbol ?REST represents the portion of the data input to the right of the
member currently being used as the ? slot-filler. That is, if the data input is [A B C D E] and the
template is being evaluated with ? replaced by B, then ?REST would be replaced by [C D E]. If
multiple parallel slots are used, then (?REST 1) goes with ?1, etc. 		

In a template , the symbol # represents the position in the data input of the member currently being
used as the ? slot-filler. That is, if the data input is [A B C D E] and the template is being
evaluated with ? replaced by B, then # would be replaced by 2. 		

Examples: 		

map [?*?] [2 3 4 5] ;[4 9 16 25] ;-)
(map "word [a b c] [d e f]) ;[ad be cf] ;-)
(map [(word ?1 ?2 ?1)] [a b c] [d e f]) ;[ada beb cfc] ;-)

map_se template data					 (library procedure)
(map_se template data1 data2 ...)

outputs a list formed by evaluating the template list repeatedly and concatenating the results using
SENTENCE. That is, the members of the output are the members of the results of the evaluations.
The output list might, therefore, be of a different length from that of the data input(s). (If the result
of an evaluation is the empty list, it contributes nothing to the final output.) The data inputs may be
words or lists. 		

In a template , the symbol ?REST represents the portion of the data input to the right of the
member currently being used as the ? slot-filler. That is, if the data input is [A B C D E] and the
template is being evaluated with ? replaced by B, then ?REST would be replaced by [C D E]. If
multiple parallel slots are used, then (?REST 1) goes with ?1, etc. 		

In a template , the symbol # represents the position in the data input of the member currently being
used as the ? slot-filler. That is, if the data input is [A B C D E] and the template is being

382
Template Based Iteration / map_se

evaluated with ? replaced by B, then # would be replaced by 2. 		

Example: 		

(map_se [list ?1 ?2] [a b c][d e f]) ;[a d b e c f] ;-)		

filter tftemplate data					 (library procedure)

outputs a word or list, depending on the type of the data input, containing a subset of the members
(for a list) or characters (for a word) of the input. The template is evaluated once for each member
or character of the data, and it must produce a TRUE or FALSE value. If the value is TRUE, then
the corresponding input constituent is included in the output. 		

Example: 		

filter "vowelp "elephant ;eea ;-)		
In a template, the symbol ?REST represents the portion of the data input to the right of the member
currently being used as the ? slot-filler. That is, if the data input is [A B C D E] and the template is
being evaluated with ? replaced by B, then ?REST would be replaced by [C D E]. 		

In a template, the symbol # represents the position in the data input of the member currently being
used as the ? slot-filler. That is, if the data input is [A B C D E] and the template is being evaluated
with ? replaced by B, then # would be replaced by 2. 		

find tftemplate data					 (library procedure)

outputs the first constituent of the data input (the first member of a list, or the first character of a
word) for which the value produced by evaluating the template with that consituent in its slot is
TRUE. If there is no such constituent, the empty list is output. 		

In a template, the symbol ?REST represents the portion of the	data input to the right of the member
currently being used as the ? slot-filler. That is, if the data input is [A B C D E] and the template is
being evaluated with ? replaced by B, then ?REST would be replaced by [C D E]. 		

In a template, the symbol # represents the position in the data input of the member currently being

383
Template Based Iteration / find

used as the ? slot-filler. That is, if the data input is [A B C D E] and the template is being evaluated
with ? replaced by B, then # would be replaced by 2. 		

Examples: 		

find [?=="a] [H a l l o] ;a ;-)
find [?=="b] [H a l l o] ;[] ;-)

reduce template data					 (library procedure)

outputs the result of applying the template to accumulate the members of the data input. The
template must be a two-slot function. Typically it is an associative function name like "SUM. If the
data input has only one constituent (member in a list or character in a word), the output is that
consituent. Otherwise, the template is first applied with ?1 filled with the next-to-last consitient
and ?2 with the last constituent. Then, if there are more constituents, the template is applied with
?1 filled with the next constituent to the left and ?2 with the result from the previous evaluation.
This process continues until all constituents have been used. The data input may not be empty. 		

Note: If the template is, like SUM, the name of a procedure that is capable of accepting arbitrarily
many inputs, it is more efficient to use APPLY instead of REDUCE. The latter is good for
associative procedures that have been written to accept exactly two inputs: 		

to max :a :b
 output ifelse :a > :b [:a] [:b]
end

pr reduce "max_ [5 2 6 8 4 2 6 0 6] ;8		
Alternatively, REDUCE can be used to write MAX as a procedure that accepts any number of
inputs, as SUM does: 		

to max [:inputs] 2
 if emptyp :inputs ~
 [(throw "error [not enough inputs to max])]
 output reduce [ifelse ?1 > ?2 [?1] [?2]] :inputs
end

384
Template Based Iteration / crossmap

crossmap template listlist				 (library procedure)
(crossmap template data1 data2 ...)

outputs a list containing the results of template evaluations. Each data list contributes to a slot in
the template ; the number of slots is equal to the number of data list inputs. As a special case, if
only one data list input is given, that list is taken as a list of data lists, and each of its members
contributes values to a slot. CROSSMAP differs from MAP in that instead of taking members from
the data inputs in parallel, it takes all possible combinations of members of data inputs, which need
not be the same length. 		

show (crossmap [word ?1 ?2] [a b c] [1 2 3 4])
;[a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4]

For compatibility with the version in the first edition of CSLS, CROSSMAP templates may use the
notation :1 instead of ?1 to indicate slots. 		

cascade endtest template startvalue			 (library procedure)
(cascade endtest tmp1 sv1 tmp2 sv2 ...)
(cascade endtest tmp1 sv1 tmp2 sv2 ... finaltemplate)

outputs the result of applying a template (or several templates, as explained below) repeatedly,
with a given value filling the slot the first time, and the result of each application filling the slot for
the following application. 		

In the simplest case, CASCADE has three inputs. The second input is a one-slot expression
template . That template is evaluated some number of times (perhaps zero). On the first evaluation,
the slot is filled with the third input; on subsequent evaluations, the slot is filled with the result of
the previous evaluation. The number of evaluations is determined by the first input. This can be
either a nonnegative integer, in which case the template is evaluated that many times, or a
predicate expression template , in	which case it is evaluated (with the same slot filler that will be
used for the evaluation of the second input) repeatedly, and the CASCADE evaluation continues as
long as the predicate value is FALSE. (In other words, the predicate template indicates the
condition for stopping.) 		

If the template is evaluated zero times, the output from CASCADE is the third (startvalue) input.
Otherwise, the output is the value produced by the last template evaluation. 		

385
Template Based Iteration / cascade

CASCADE templates may include the symbol # to represent the number of times the template has
been evaluated. This slot is filled with 1 for the first evaluation, 2 for the second, and so on. 		

show cascade 5 [lput # ?] [] ;[1 2 3 4 5]
show cascade [vowelp first ?] [bf ?] "spring ;ing
show cascade 5 [# * ?] 1 ;120

Several cascaded results can be computed in parallel by providing additional template -startvalue
pairs as inputs to CASCADE. In this case, all templates (including the endtest template , if used)
are multi-slot, with the number of slots equal to the number of pairs of inputs. In each round of
evaluations, ?2 represents the result of evaluating the second template in the previous round. If the
total number of inputs (including the first endtest input) is odd, then the output from CASCADE is
the final value of the first template . If the total number of inputs is even, then the last input is a
template that is evaluated once, after the end test is satisfied, to determine the output from
CASCADE. 		

to fibonacci :n
 output (cascade :n [?1 + ?2] 1 [?1] 0)
end

to piglatin :aword
 output (cascade [vowelp first ?]
 [word bf ? first ?]
 :aword
 [word ? "ay])
end
;piglatin defined
piglatin "greetings ;eetingsgray ;-)

cascade2 endtest temp1 startval1 temp2 startval2	 (library procedure)

outputs the result of invoking CASCADE with the same inputs. The only difference is that the
default number of inputs is five instead of three. 		

transfer endtest template inbasket			 (library procedure)

386
Template Based Iteration / transfer

outputs the result of repeated evaluation of the template . The template is evaluated once for each
member of the list "inbasket." TRANSFER maintains an "outbasket" that is initially the empty list.
After each evaluation of the template , the resulting value becomes the new outbasket. 		

In the template , the symbol ?IN represents the current member from the inbasket; the symbol
?OUT represents the entire current outbasket. Other slot symbols should not be used. 		

If the first (endtest) input is an empty list, evaluation continues until all inbasket members have
been used. If not, the first input must be a predicate expression template , and evaluation continues
until either that template 's value is TRUE or the inbasket is used up. 		

387
Macros

Macros

Macros

• _Macro 387
• _defMacro 387
• MacroP 390
• macroexpand 390

_Macro procname :input1 :input2 ...				 (special form)

_defMacro procname text

A macro is a special kind of procedure whose output is evaluated as Logo instructions in the context
of the macro's caller. _macro is exactly like TO except that the new procedure becomes a macro;
_defmacro is exactly like DEFINE with the same exception. 		

Macros are useful for inventing new control structures comparable to REPEAT, IF, and so on.
Such control structures can almost, but not quite, be duplicated by ordinary Logo procedures. 		

For example, here is an ordinary procedure version of REPEAT: 		

to my_repeat :num :instructions
 if :num=0 [stop]
 run :instructions
 my_repeat :num-1 :instructions
end

This version works fine for most purposes, e.g., 		

my_repeat 5 [print "hello]		
But it doesn't work if the instructions to be carried out include OUTPUT, STOP, or LOCAL. 		

388
Macros / _defMacro

For example, consider this procedure: 		

to example
 print [Guess my secret word. You get three guesses.]
 repeat 3 ~
 [
 type "|?? |
 if readword = "secret [pr "Right! stop]
]
 print [Sorry, the word was "secret"!]
end

This procedure works as written, but if MY_REPEAT is used instead of REPEAT, it won't work
because the STOP will stop MY_REPEAT instead of stopping EXAMPLE as desired. 		

The solution is to make MY_REPEAT a macro. Instead of actually carrying out the computation, a
macro must return a list containing Logo instructions. The contents of that list are evaluated as if
they appeared in place of the call to the macro. Here's a macro version of REPEAT: 		

_macro my_repeat :num :instructions
 if :num=0 [output []]
 output sentence :instructions ~
 (list "my_repeat :num-1 :instructions)
end

Every macro is an operation -- it must always output something. Even in the base case,
MY_REPEAT outputs an empty instruction list. 		

To show how MY_REPEAT works, let's take the example 		

my_repeat 5 [print "hello]		
For this example, MY_REPEAT will output the instruction list 		

[print "hello my_repeat 4 [print "hello]]		
Logo then executes these instructions in place of the original invocation of MY_REPEAT; this
prints "hello" once and invokes another repetition. 		

The technique just shown, although fairly easy to understand, has the defect of slowness because
each repetition has to construct an instruction list for evaluation. Another approach is to make
my_repeat a macro that works just like the non-macro version unless the instructions to be repeated

389
Macros / _defMacro

include OUTPUT or STOP: 		

_macro my_repeat :num :instructions
 catch "repeat_catchtag ~
 [op repeat_done runresult [repeat1 :num :instructions]]
 op []
end

to repeat1 :num :instructions
 if :num=0 [throw "repeat_catchtag]
 run :instructions
 _maybeOutput repeat1 :num-1 :instructions
end

to repeat_done :repeat_result
 if emptyp :repeat_result [op [stop]]
 op list "output quoted first :repeat_result
end

If the instructions do not include STOP or OUTPUT, then REPEAT1 will reach its base case and
invoke THROW. As a result, my_repeat's last instruction line will output an empty list, so the
second evaluation of the macro result will do nothing. But if a STOP or OUTPUT happens, then
REPEAT_DONE will output a STOP or OUTPUT instruction that will be re-executed in the caller's
context. 		

The macro-defining commands have names starting with a dot because macros are an advanced
feature of Logo; it's easy to get in trouble by defining a macro that doesn't terminate, or by failing to
construct the instruction list properly. 		

Lisp users should note that Logo macros are NOT special forms. That is, the inputs to the macro are
evaluated normally, as they would be for any other Logo procedure. It's only the output from the
macro that's handled unusually. 		

Here's another example: 		

390
Macros / _defMacro

_macro localmake :name :value
 output (list "local ~
 word "" :name ~
 "apply ~
 ""make ~
 (list :name :value))
end

It's used this way: 		

to try
 localmake "garply "hello
 print :garply
end

LOCALMAKE outputs the list
 [local "garply apply "make [garply hello]]
The reason for the use of APPLY is to avoid having to decide whether or not the second input to
MAKE requires a quotation mark before it. (In this case it would -- MAKE "GARPLY "HELLO --
but the quotation mark would be wrong if the value were a list.) 		

It's often convenient to use the ` function to construct the instruction list: 		

_macro localmake :name :value
 op `[local ,[word "" :name] apply "make [,[:name] ,[:value]]]
end

On the other hand, ` is pretty slow, since it's tree recursive and written in Logo. 		

MacroP name
Macro? name

outputs TRUE if its input is the name of a macro. 		

macroexpand expr					 (library procedure)

391
Macros / macroexpand

takes as its input a Logo expression that invokes a macro (that is, one that begins with the name of a
macro) and outputs the the Logo expression into which the macro would translate the input
expression. 		

_macro localmake :name :value
 op `[local ,[word "" :name] apply "make [,[:name] ,[:value]]]
end

show macroexpand [localmake "pi 3.14159]
;[local "pi apply "make [pi 3.14159]]

Error Processing

If an error occurs, Logo takes the following steps. First, if there is an available variable named
ERRACT, Logo takes its value as an instructionlist and runs the instructions. The operation
ERROR may be used within the instructions (once) to examine the error condition. If the
instructionlist invokes PAUSE, the error message is printed before the pause happens. Certain
errors are "recoverable"; for one of those errors, if the instructionlist outputs a value, that value is
used in place of the expression that caused the error. (If ERRACT invokes PAUSE and the user
then invokes CONTINUE with an input, that input becomes the output from PAUSE and therefore
the output from the ERRACT instructionlist.) 		

It is possible for an ERRACT instructionlist to produce an inappropriate value or no value where
one is needed. As a result, the same error condition could recur forever because of this mechanism.
To avoid that danger, if the same error condition occurs twice in a row from an ERRACT
instructionlist without user interaction, the message "Erract loop" is printed and control returns to
toplevel. "Without user interaction" means that if ERRACT invokes PAUSE and the user provides
an incorrect value, this loop prevention mechanism does not take effect and the user gets to try
again. 		

During the running of the ERRACT instructionlist, ERRACT is locally unbound, so an error in the
ERRACT instructions themselves will not cause a loop. In particular, an error during a pause will
not cause a pause-within-a-pause unless the user reassigns the value [PAUSE] to ERRACT during
the pause. But such an error will not return to toplevel; it will remain within the original pause loop.
		

392
Error Processing

If there is no available ERRACT value, Logo handles the error by generating an internal THROW
"ERROR. (A user program can also generate an error condition deliberately by invoking THROW.)
If this throw is not caught by a CATCH "ERROR in the user program, it is eventually caught either
by the toplevel instruction loop or by a pause loop, which prints the error message. An invocation of
CATCH "ERROR in a user program locally unbinds ERRACT, so the effect is that whichever of
ERRACT and CATCH "ERROR is more local will take precedence. 		

If a floating point overflow occurs during an arithmetic operation, or a two-input mathematical
function (like POWER) is invoked with an illegal combination of inputs, the "doesn't like" message
refers to the second operand, but should be taken as meaning the combination. 		

Here are the numeric codes that appear as the first member of the list output by ERROR when an
error is caught, with the corresponding messages. Some messages may have two different codes
depending on whether or not the error is recoverable (that is, a substitute value can be provided
through the ERRACT mechanism) in the specific context. Some messages are warnings rather than
errors; these will not be caught. Errors 0 and 32 are so bad that Logo exits immediately. 		

393
Error Processing

 0 Fatal internal error (can't be caught)
 1 Out of memory
 2 Stack overflow
 3 Turtle out of bounds
 4 PROC doesn't like DATUM as input (not recoverable)
 5 PROC didn't output to PROC
 6 Not enough inputs to PROC
 7 PROC doesn't like DATUM as input (recoverable)
 8 Too much inside ()'s
 9 You don't say what to do with DATUM
 10 ')' not found
 11 VAR has no value
 12 Unexpected ')'
 13 I don't know how to PROC (recoverable)
 14 Can't find catch tag for THROWTAG
 15 PROC is already defined
 16 Stopped
 17 Already dribbling
 18 File system error
 19 Assuming you mean IFELSE, not IF (warning only)
 20 VAR shadowed by local in procedure call (warning only)
 21 Throw "Error
 22 PROC is a primitive
 23 Can't use TO inside a procedure
 24 I don't know how to PROC (not recoverable)
 25 IFTRUE/IFFALSE without TEST
 26 Unexpected ']'
 27 Unexpected '}'
 28 Couldn't initialize graphics
 29 Macro returned VALUE instead of a list
 30 You don't say what to do with VALUE
 31 Can only use STOP or OUTPUT inside a procedure
 32 APPLY doesn't like BADTHING as input
 33 END inside multi-line instruction
 34 Really out of memory (can't be caught)

394
Special Variables

Special Variables

Logo takes special action if any of the following variable names exists. They follow the normal
scoping rules, so a procedure can locally set one of them to limit the scope of its effect. Initially, no
variables exist. 		

Special Variables

• erract 394
• loadNoisily 394
• printDepthLimit 394
• printWidthLimit 394
• reDefP 395
• Startup 395

erract

an instructionlist that will be run in the event of an error. Typically has the value [PAUSE] to allow
interactive debugging. 		

loadNoisily

if TRUE, prints the names of procedures defined when loading from a file (including the temporary
file made by EDIT). 		

printDepthLimit

if a nonnegative integer, indicates the maximum depth of sublist structure that will be printed by
PRINT, etc. 		

395
Special Variables / printWidthLimit

printWidthLimit

if a nonnegative integer, indicates the maximum number of members in any one list that will be
printed by PRINT, etc. 		

reDefP

if TRUE, allows primitives to be erased (ERASE) or redefined (COPYDEF). 		

Startup

if assigned a list value in a file loaded by LOAD, that value is run as an instructionlist after the
loading. 		

396
GUI programming

GUI programming

GUI means Graphical User Interface, that's something which Windows, X11, or GTK implements.
Among GUI programming are Custom Event Handlers, Standard Dialogs, Windows (=Frames),
Graphs (=Logo drawing areas), Sizers and Controls. 		

Controls are little windows showing some content, numerical, textual or list values, maybe editable
or readonly, or clickable. 		

How to start? It's best to read on. The index page of each of the following sub-chapters helps
getting you started, and they mostly point to a demo Logo program, i.e. buttontest.lg or frametest.lg.
		

GUI programming

• Window Styles 396
• Custom Event Handlers 399
• Standard Dialogs 413
• Frames 422
• Graphs 432
• BoxSizers 439
• Buttons 443
• CheckBoxes 446
• ChoiceBoxes 450
• ComboBoxes 461
• FloatControls 484
• Gauges 489
• IntControls 493
• ListBoxes 497
• ListControls 507
• RadioButtons 530
• Sliders 534
• StaticTexts 539
• TextControls 544
• ToggleButtons 556
• Miscellaneous GUI elements 560

397
GUI programming / Window Styles

Window Styles

The following styles can apply to all windows, although they will not always make sense for a
particular window class or on all platforms. 		

wxSIMPLE_BORDER Displays a thin border around the window. wxBORDER is the old name
for this style. 		

wxDOUBLE_BORDER Displays a double border. Windows and Mac only. 		

wxSUNKEN_BORDER Displays a sunken border. 		

wxRAISED_BORDER Displays a raised border. 		

wxSTATIC_BORDER Displays a border suitable for a static control. Windows only. 		

wxNO_BORDER Displays no border, overriding the default border style for the window. 		

wxTRANSPARENT_WINDOW The window is transparent, that is, it will not receive paint
events. Windows only. 		

wxTAB_TRAVERSAL Use this to enable tab traversal for non-dialog windows. 		

wxWANTS_CHARS Use this to indicate that the window wants to get all char/key events for all
keys - even for keys like TAB or ENTER which are usually used for dialog navigation and which
wouldn't be generated without this style. If you need to use this style in order to get the arrows or
etc., but would still like to have normal keyboard navigation take place, you should create and send
a wxNavigationKeyEvent in response to the key events for Tab and Shift-Tab. 		

wxNO_FULL_REPAINT_ON_RESIZE Disables repainting the window completely when its size
is changed - you will have to repaint the new window area manually if you use this style. Currently
only has an effect for Windows. 		

wxVSCROLL Use this style to enable a vertical scrollbar. 		

wxHSCROLL Use this style to enable a horizontal scrollbar. 		

wxALWAYS_SHOW_SB If a window has scrollbars, disable them instead of hiding them when
they are not needed (i.e. when the size of the window is big enough to not require the scrollbars to
navigate it). This style is currently only implemented for wxMSW and wxUniversal and does
nothing on the other platforms. 		

398
GUI programming / Window Styles

wxCLIP_CHILDREN Use this style to eliminate flicker caused by the background being repainted,
then children being painted over them. Windows only. 		

wxFULL_REPAINT_ON_RESIZE Use this style to force a complete redraw of the window
whenever it is resized instead of redrawing just the part of the window affected by resizing. Note
that this was the behaviour by default before 2.5.1 release and that if you experience redraw
problems with the code which previously used to work you may want to try this. 		

399
GUI programming / Custom Event Handlers

Custom Event Handlers

...are "short" Logo routines which are executed when a specific event is raised, i.e. a keystroke or a
mouse click. 		

"short" means here short in execution time relative to the number of events per second. If there are
many events in one second, as it can be with mouse events, then your custom event handler
shouldn't block, and at least it should stop at some time, it should terminate. 		

If there are more events generated than could be processed, eventually a fatal stack overflow will
occure and Logo will crash. 		

For the console are the following keyboard and mouse handlers: 		

OnChar	OnKeyDown	OnKeyUp	KeyboardValue
OnTextMouseLeftDown	OnTextMouseRightDown OnTextMouseMiddleDown
OnTextMouseLeftUp	OnTextMouseRightUp OnTextMouseMiddleUp
OnTextMouseLeftDClick	OnTextMouseRightDClick OnTextMouseMiddleDClick
OnTextMouseMotion 		

For the main graph window are those mouse handlers: 		

OnMouseLeftDown	OnMouseRightDown OnMouseMiddleDown
OnMouseLeftUp	OnMouseRightUp OnMouseMiddleUp
OnMouseLeftDClick	OnMouseRightDClick OnMouseMiddleDClick OnMouseMotion 		

The event handlers are presented in the example eventtest.lg. 		

Custom Event Handlers

• OnChar 400
• OnKeyDown 400
• OnKeyUp 400
• KeyboardValue 401
• OnTextMouseLeftDown 405
• OnTextMouseRightDown 405
• OnTextMouseMiddleDown 405
• OnTextMouseLeftUp 406
• OnTextMouseRightUp 406

400
GUI programming / Custom Event Handlers

• OnTextMouseMiddleUp 407
• OnTextMouseLeftDClick 407
• OnTextMouseRightDClick 407
• OnTextMouseMiddleDClick 408
• OnTextMouseMotion 408
• OnMouseLeftDown 409
• OnMouseRightDown 409
• OnMouseMiddleDown 409
• OnMouseLeftUp 410
• OnMouseRightUp 410
• OnMouseMiddleUp 410
• OnMouseLeftDClick 411
• OnMouseRightDClick 411
• OnMouseMiddleDClick 411
• OnMouseMotion 411

OnChar commands

This command sets the Logo event handler for a char event of the console. A char event is
generated when a key is pressed or held down longer. 		

Example: 		

OnChar [pr KeyboardValue] ;press Ctrl-Break to stop		

OnKeyDown commands

This command sets the Logo event handler for a key down event of the console. A key down event
is generated when a key is pressed or held down longer. 		

Example: 		

OnKeyDown [pr KeyboardValue]		

OnKeyUp commands

401
GUI programming / Custom Event Handlers / OnKeyUp

This command sets the Logo event handler for a key up event of the console. A key up event is
generated when a key is released from the pressed state. 		

Example: 		

OnKeyUp [pr KeyboardValue]		

KeyboardValue

returns the key number of the latest processed key event, this is a char event, key down event or key
up event, all just from the console window. 		

The keycodes are for normal keys their ASCII values, and for special keys they correspond to the
following constants: 		

WXK_BACK
WXK_TAB
WXK_RETURN
WXK_ESCAPE
WXK_SPACE
WXK_DELETE

402
GUI programming / Custom Event Handlers / KeyboardValue

WXK_START
WXK_LBUTTON
WXK_RBUTTON
WXK_CANCEL
WXK_MBUTTON
WXK_CLEAR
WXK_SHIFT
WXK_CONTROL
WXK_MENU
WXK_PAUSE
WXK_CAPITAL
WXK_PRIOR
WXK_NEXT
WXK_END
WXK_HOME
WXK_LEFT
WXK_UP
WXK_RIGHT
WXK_DOWN
WXK_SELECT
WXK_PRINT
WXK_EXECUTE
WXK_SNAPSHOT
WXK_INSERT
WXK_HELP
WXK_NUMPAD0
WXK_NUMPAD1
WXK_NUMPAD2
WXK_NUMPAD3
WXK_NUMPAD4
WXK_NUMPAD5
WXK_NUMPAD6
WXK_NUMPAD7
WXK_NUMPAD8
WXK_NUMPAD9
WXK_MULTIPLY
WXK_ADD
WXK_SEPARATOR
WXK_SUBTRACT
WXK_DECIMAL

403
GUI programming / Custom Event Handlers / KeyboardValue

WXK_DIVIDE
WXK_F1
WXK_F2
WXK_F3
WXK_F4
WXK_F5
WXK_F6
WXK_F7
WXK_F8
WXK_F9
WXK_F10
WXK_F11
WXK_F12
WXK_F13
WXK_F14
WXK_F15
WXK_F16
WXK_F17
WXK_F18
WXK_F19
WXK_F20
WXK_F21
WXK_F22
WXK_F23
WXK_F24
WXK_NUMLOCK
WXK_SCROLL
WXK_PAGEUP
WXK_PAGEDOWN

404
GUI programming / Custom Event Handlers / KeyboardValue

WXK_NUMPAD_SPACE
WXK_NUMPAD_TAB
WXK_NUMPAD_ENTER
WXK_NUMPAD_F1
WXK_NUMPAD_F2
WXK_NUMPAD_F3
WXK_NUMPAD_F4
WXK_NUMPAD_HOME
WXK_NUMPAD_LEFT
WXK_NUMPAD_UP
WXK_NUMPAD_RIGHT
WXK_NUMPAD_DOWN
WXK_NUMPAD_PRIOR
WXK_NUMPAD_PAGEUP
WXK_NUMPAD_NEXT
WXK_NUMPAD_PAGEDOWN
WXK_NUMPAD_END
WXK_NUMPAD_BEGIN
WXK_NUMPAD_INSERT
WXK_NUMPAD_DELETE
WXK_NUMPAD_EQUAL
WXK_NUMPAD_MULTIPLY
WXK_NUMPAD_ADD
WXK_NUMPAD_SEPARATOR
WXK_NUMPAD_SUBTRACT
WXK_NUMPAD_DECIMAL
WXK_NUMPAD_DIVIDE

The following key codes are only generated under Windows currently: 		

WXK_WINDOWS_LEFT
WXK_WINDOWS_RIGHT
WXK_WINDOWS_MENU
WXK_COMMAND

Example: 		

405
GUI programming / Custom Event Handlers / KeyboardValue

OnChar [kv=KeyboardValue
 pr kv
 if kv==WXK_ESCAPE [OnChar []]] ;press Esc to stop

OnTextMouseLeftDown commands

This command sets the Logo event handler for a mouse left button down event of the console. This
way it enables custom mouse behavior of the console. 		

Example: 		

OnTextMouseLeftDown [
 cs ht
 setH 90
 Label WordUnderCursor
 updateGraph]

OnTextMouseRightDown commands

This command sets the Logo event handler for a mouse right button down event of the console.
This way it enables custom mouse behavior of the console. 		

Example: 		

OnTextMouseRightDown [
 disableTextMouseEvents ;neccessary to prevent popup menu
 cs ht
 setH 90
 Label WordUnderCursor
 updateGraph]
OnTextMouseLeftDown [
 enabletextmouseevents
 setCursor TextMousePos]

406
GUI programming / Custom Event Handlers / OnTextMouseMiddleDown

OnTextMouseMiddleDown commands

This command sets the Logo event handler for a mouse middle button down event of the console.
This way it enables custom mouse behavior of the console. 		

Example: 		

OnTextMouseMiddleDown [
 cs ht
 setH 90
 Label WordUnderCursor
 updateGraph]

OnTextMouseLeftUp commands

This command sets the Logo event handler for a mouse left button up (=release) event of the
console. This way it enables custom mouse behavior of the console. 		

Example: 		

OnTextMouseLeftUp [
 cs ht
 seth 90
 Label TextMousePos
 updateGraph]

OnTextMouseRightUp commands

This command sets the Logo event handler for a mouse right button up (=release) event of the
console. This way it enables custom mouse behavior of the console. 		

Example: 		

407
GUI programming / Custom Event Handlers / OnTextMouseRightUp

OnTextMouseRightUp [
 cs ht
 seth 90
 Label TextMousePos
 updateGraph]

OnTextMouseMiddleUp commands

This command sets the Logo event handler for a mouse middle button up (=release) event of the
console. This way it enables custom mouse behavior of the console. 		

Example: 		

OnTextMouseMiddleUp [
 cs ht
 seth 90
 Label TextMousePos
 updateGraph]

OnTextMouseLeftDClick commands

This command sets the Logo event handler for a mouse left button double click event of the
console. This way it enables custom mouse behavior of the console. 		

Example: 		

OnTextMouseLeftDClick [
 setXY
 10*first TextMousePos
 -20*first bf TextMousePos
 updateGraph]

408
GUI programming / Custom Event Handlers / OnTextMouseRightDClick

OnTextMouseRightDClick commands

This command sets the Logo event handler for a mouse right button double click event of the
console. This way it enables custom mouse behavior of the console. 		

Example: 		

OnTextMouseRightDown [
 disableTextMouseEvents] ;neccessary to prevent popup menu
OnTextMouseRightDClick [
 setXY
 10*first TextMousePos
 -20*first bf TextMousePos
 updateGraph]
OnTextMouseLeftDown [
 enabletextmouseevents
 setCursor TextMousePos]

OnTextMouseMiddleDClick commands

This command sets the Logo event handler for a mouse middle button double click event of the
console. This way it enables custom mouse behavior of the console. 		

Example: 		

OnTextMouseMiddleDClick [
 setXY
 10*first TextMousePos
 -20*first bf TextMousePos
 updateGraph]

OnTextMouseMotion commands

409
GUI programming / Custom Event Handlers / OnTextMouseMotion

This command sets the Logo event handler for a mouse motion event of the console. This way it
enables custom mouse behavior of the console. 		

Example: 		

OnTextMouseMotion [
 ifelse MouseButtons != 0 [PenDown][PenUp]
 setXY
 10*first TextMousePos
 -20*first bf TextMousePos
 updateGraph]

OnMouseLeftDown commands

This command sets the Logo event handler for a mouse left button down event of the main graph
window. 		

Example: 		

OnMouseLeftDown [PenDown]
OnMouseLeftUp [PenUp]
OnMouseMotion [setPosXYZ MousePos updateGraph]

OnMouseRightDown commands

This command sets the Logo event handler for a mouse right button down event of the main graph
window. 		

Example: 		

OnMouseRightDown [setPosXYZ MousePos fill updateGraph]		

410
GUI programming / Custom Event Handlers / OnMouseMiddleDown

OnMouseMiddleDown commands

This command sets the Logo event handler for a mouse middle button down event of the main
graph window. 		

Example: 		

OnMouseMiddleDown [pr MousePos]		

OnMouseLeftUp commands

This command sets the Logo event handler for a mouse left button up (=release) event of the main
graph window. 		

Example: 		

OnMouseLeftUp [pr [up!]]		

OnMouseRightUp commands

This command sets the Logo event handler for a mouse right button up (=release) event of the main
graph window. 		

Example: 		

OnMouseRightUp [pr [up!]]		

OnMouseMiddleUp commands

This command sets the Logo event handler for a mouse middle button up (=release) event of the
main graph window. 		

Example: 		

411
GUI programming / Custom Event Handlers / OnMouseMiddleUp

OnMouseMiddleUp [pr [up!]]		

OnMouseLeftDClick commands

This command sets the Logo event handler for a mouse left button double click event of the main
graph window. 		

Example: 		

OnMouseLeftDClick [pr [doubleclick!]]		

OnMouseRightDClick commands

This command sets the Logo event handler for a mouse right button double click event of the main
graph window. 		

Example: 		

OnMouseRightDClick [pr [doubleclick!]]		

OnMouseMiddleDClick commands

This command sets the Logo event handler for a mouse middle button double click event of the
main graph window. 		

Example: 		

OnMouseMiddleDClick [pr [doubleclick!]]		

OnMouseMotion commands

This command sets the Logo event handler for a mouse motion event of the main graph window. 		

412
GUI programming / Custom Event Handlers / OnMouseMotion

Example: 		

OnMouseMotion [setPosXYZ MousePos updateGraph]		

413
GUI programming / Standard Dialogs

Standard Dialogs

The following standard dialogs for getting information from the user are now available. 		

They are presented in the example dialogstest.lg. 		

Standard Dialogs

• DirSelector 413
• FileSelector 414
• getColorFromUser 414
• getFontFromUser 415
• getMultipleChoices 415
• getNumberFromUser 416
• getPasswordFromUser 417
• getTextFromUser 417
• getSingleChoice 418
• getSingleChoiceIndex 419
• MessageBox 419

DirSelector
(DirSelector message defaultPath pos)

operation to show a directory selector dialog, where the user can choose a directory. 		

 message is the input prompt in the dialog. 		

 defaultPath is the standard path, where the selector starts. 		

 pos is a list of two integer numbers representing x and y position. 		

Output is the choosen directory as a word. 		

Examples: 		

414
GUI programming / Standard Dialogs / DirSelector

pr DirSelector
pr (DirSelector [This is the input prompt][C:\\][100 200])

FileSelector message
(FileSelector message stdPath stdFilename stdExtension wildcard flags pos)

Operation to show a file selector dialog, where the user can choose a file from a directory listing. 		

 message is the input prompt text in the dialog. 		

 stdPath is the default path, where the selector starts. 		

 stdFilename is the default filename. 		

 stdExtension is the default file extension. 		

 wildcard is a DOS or unix wildcard for the selection of a subset of files to display. 		

 flags may be a combination of wxOPEN wxSAVE wxOVERWRITE_PROMPT
wxFILE_MUST_EXIST wxMULTIPLE or 0 		

 pos is a list of two integer numbers representing x and y position. 		

Output is the choosen filename as a word. 		

Examples: 		

pr FileSelector [Choose a file]
pr (FileSelector [Choose a file] " [dialogtest.lg][lg][*.lg]
 wxOPEN [400 100])

(getColorFromUser)
		

getColorFromUser stdColor

415
GUI programming / Standard Dialogs / getColorFromUser

Operation to show a color selector dialog, where the user can choose a color with either RGB
numbers, from a set of standard colors, or by clicking on a color gradient and choosing the
brightness. 		

 stdColor is the initial selected color. 		

Output is the choosen color as a int. 		

Examples: 		

pr reRGB (getColorFromUser)
pr reRGB getColorFromUser RGB 1 0.5 0.25

getFontFromUser

Operation to show a font selector dialog, where the user can select a font. 		

Output is a list with the following structure: 		

[PointSize [PixelSizeX PixelSizeY] Familiy Style Weight FaceName] 		

Example: 		

pr getFontFromUser		

getMultipleChoices message caption choices
(getMultipleChoices message caption choices pos centre size)

Operation to show a dialog to choose some of multiple choices . 		

 message is the input promt text. 		

 caption is the window title text. 		

 choices is a list of items which may be lists or words to select from. 		

416
GUI programming / Standard Dialogs / getMultipleChoices

 pos is a list of two integer numbers representing x and y position. 		

If centre is true, the message text (which may include new line characters) is centred; if false, the
message is left-justified. 		

 size is a list of two numbers representing width and height. 		

Output is a list of integers representing the selections, starting from 1 for the first choice. 		

Examples: 		

show (getMultipleChoices [a Message][a Caption]
 [[Choice Nr. 1][Second Choice][Third Choice]])

show (getMultipleChoices [a Message][a Caption]
 [[Choice Nr. 1][Second Choice][Third Choice]]
 [200 200] false [400 300])

getNumberFromUser message prompt caption value min max
(getNumberFromUser message prompt caption value min max pos)

Operation to show a dialog to enter a integer number. 		

 message is the dialog text. 		

 prompt is the input prompt text. 		

 caption is the window title text. 		

 value is the standard number showing at the opening of the dialog. 		

 min is the minimal value which can be entered. 		

 max is the maximal value . 		

 pos is a list of two integer numbers representing x and y position. 		

417
GUI programming / Standard Dialogs / getNumberFromUser

Output is the entered integer number. 		

Example: 		

show (getNumberFromUser [a Message][a Prompt\
 maybe multiline][A caption] 1234 42 4321)

getPasswordFromUser message caption stdValue
(getPasswordFromUser message caption stdValue pos centre)

Operation to show a dialog to enter a password. 		

 message is the dialog text. 		

 caption is the window title text. 		

 stdValue is the standard password showing at the opening of the dialog. 		

 pos is a list of two integer numbers representing x and y position. 		

If centre is true, the message text (which may include new line characters) is centred; if false, the
message is left-justified. 		

Output is the entered password. 		

Examples: 		

show getPasswordFromUser [A Message][A Caption][default_value]
show (getPasswordFromUser [A Message][A Caption][default_value]
 [200 100])
show (getPasswordFromUser [A Message][A Caption][default_value]
 [200 100] false)

getTextFromUser message caption stdValue
(getTextFromUser message caption stdValue pos centre)

418
GUI programming / Standard Dialogs / getTextFromUser

Operation to show a dialog to enter text. 		

 message is the dialog text. 		

 caption is the window title text. 		

 stdValue is the standard password showing at the opening of the dialog. 		

 pos is a list of two integer numbers representing x and y position. 		

If centre is true, the message text (which may include new line characters) is centred; if false, the
message is left-justified. 		

Output is the entered text. 		

Examples: 		

show (getTextFromUser [A Message][A Caption][default_value]
 [200 100])
show (getTextFromUser [A Message][A Caption][default_value]
 [200 100] false)

getSingleChoice message caption choices
(getSingleChoice message caption choices pos centre size)

Operation to show a dialog to choose one of multiple choices . 		

 message is the input promt text. 		

 caption is the window title text. 		

 choices is a list of items which may be lists or words to select from. 		

 pos is a list of two integer numbers representing x and y position. 		

If centre is true, the message text (which may include new line characters) is centred; if false, the
message is left-justified. 		

419
GUI programming / Standard Dialogs / getSingleChoice

 size is a list of two numbers representing width and height. 		

Output the text of the selected choice. 		

Examples: 		

show (getSingleChoice [A Message][A Caption]
 [[Choice Nr. 1][Second Choice][Third Choice]])

getSingleChoiceIndex message caption choices
(getSingleChoiceIndex message caption choices pos centre size)

Operation to show a dialog to choose one of multiple choices . 		

 message is the input promt text. 		

 caption is the window title text. 		

 choices is a list of items which may be lists or words to select from. 		

 pos is a list of two integer numbers representing x and y position. 		

If centre is true, the message text (which may include new line characters) is centred; if false, the
message is left-justified. 		

 size is a list of two numbers representing width and height. 		

Output is the zero-based index representing the selected string. If the user pressed cancel, -1 is
returned. 		

Example: 		

show (getSingleChoiceIndex [A Message][A Caption]
 [[Choice Nr. 1][Second Choice][Third Choice]])

420
GUI programming / Standard Dialogs / MessageBox

MessageBox message
(MessageBox message caption style pos)

Operation to show a dialog with a short message text and one or more buttons, depending on the
style . 		

 message is the MessageBox text. 		

 caption is the window title text. 		

 style may be a bit list of the following identifiers: 		

wxYES_NO Puts Yes and No buttons on the message box. May be combined with wxCANCEL.
		

wxCANCEL Puts a Cancel button on the message box. May be combined with wxYES_NO or
wxOK. 		

wxOK Puts an Ok button on the message box. May be combined with wxCANCEL. 		

wxICON_EXCLAMATION Displays an exclamation mark symbol. 		

wxICON_HAND Displays an error symbol. 		

wxICON_ERROR Displays an error symbol - the same as wxICON_HAND. 		

wxICON_QUESTION Displays a question mark symbol. 		

wxICON_INFORMATION Displays an information symbol. 		

 pos is a list of two integer numbers representing x and y position. 		

Output is one of the constants wxYES wxNO wxCANCEL wxOK. 		

Examples: 		

421
GUI programming / Standard Dialogs / MessageBox

show MessageBox [This is a Message]
show (MessageBox [This is a Message][A Caption]
 wxYes_No+wxCancel [400 200])

422
GUI programming / Frames

Frames

...are windows typically having a border around it and mostly a title bar, maybe with a system menu
on it. You can place Controls or Graphs in a Frame, specifing the Frame as parent of the Control. 		

They are presented in the example frametest.lg. 		

Frames

• Frame 422
• FrameDestroy 424
• FrameOnChar 425
• FrameOnKeyDown 425
• FrameOnKeyUp 425
• FrameSetFocus 426
• FrameEnable 426
• FrameMaximize 427
• FrameIconize 427
• FrameFullScreen 427
• FrameSetClientSize 428
• FrameSetColor 428
• FrameSetBackgroundColor 429
• FrameSetFontSize 429
• FrameSetFontName 429
• FrameSetFontStyle 430
• FrameSetFontWeight 430
• FrameSetShape 430
• FrameSetSizer 431

Frame parent title style pos size
(Frame parent title style)
(Frame parent title style pos size name)

Operation which outputs a new Frame (a window with maybe a border around). This Frame can be
assigned to a variable, and it will be deleted, when the variable is being deleted. So with local
variables you can emulate Dialogs with Frames until those will be included into aUCBLogo. 		

423
GUI programming / Frames / Frame

 parent can be a Frame or a Graph. 		

 title is the window title text. 		

 style is the Window Style and can be a combination (with +) of the folling constants: 		

wxDEFAULT_FRAME_STYLE Defined as wxMINIMIZE_BOX | wxMAXIMIZE_BOX |
wxRESIZE_BORDER | wxSYSTEM_MENU | wxCAPTION | wxCLOSE_BOX |
wxCLIP_CHILDREN. 		

wxICONIZE Display the frame iconized (minimized). Windows only. 		

wxCAPTION Puts a caption on the frame. 		

wxMINIMIZE Identical to wxICONIZE. Windows only. 		

wxMINIMIZE_BOX Displays a minimize box on the frame. 		

wxMAXIMIZE Displays the frame maximized. Windows only. 		

wxMAXIMIZE_BOX Displays a maximize box on the frame. 		

wxCLOSE_BOX Displays a close box on the frame. 		

wxSTAY_ON_TOP Stay on top of all other windows, see also
wxFRAME_FLOAT_ON_PARENT. 		

wxSYSTEM_MENU Displays a system menu. 		

wxRESIZE_BORDER Displays a resizeable border around the window. 		

wxFRAME_TOOL_WINDOW Causes a frame with a small titlebar to be created; the frame does
not appear in the taskbar under Windows or GTK+. 		

wxFRAME_NO_TASKBAR Creates an otherwise normal frame but it does not appear in the
taskbar under Windows or GTK+ (note that it will minimize to the desktop window under Windows
which may seem strange to the users and thus it might be better to use this style only without
wxMINIMIZE_BOX style). In wxGTK, the flag is respected only if GTK+ is at least version 2.2
and the window manager supports _NET_WM_STATE_SKIP_TASKBAR hint. Has no effect

424
GUI programming / Frames / Frame

under other platforms. 		

wxFRAME_FLOAT_ON_PARENT The frame will always be on top of its parent (unlike
wxSTAY_ON_TOP). A frame created with this style must have a non-NULL parent . 		

wxFRAME_SHAPED Windows with this style are allowed to have their shape changed with the
SetShape method. 		

 pos is a list of two integer numbers representing x and y position. 		

 size is a list of two integer numbers representing width and height. 		

Like all window or control positions and sizes the value -1 for a coordinate means that wxWidgets
will use the default value. This is especially useful when you use sizers, so you mostly don't need to
figure out the coordinates yourself, for i.e. Buttons or other controls. 		

 name is the internal name of the window, it's mostly unused. 		

Output is the created Frame. 		

Examples: 		

f=Frame [][MyFrame][][400 200][200 100]
f2=(Frame [][MyFrame2]
 wxDefault_Frame_Style+wxStay_on_Top
 [400 300][300 300])

f3=(Frame f2 [MyFrame3]
 wxDefault_Frame_Style+wxFrame_float_on_parent+wxFrame_shaped
 [500 400][260 300])

f4=(Frame f2 [MyFrame4]
 wxDefault_Frame_Style+wxFrame_shaped+wxFrame_float_on_parent
 [100 400][260 300]
 [noname])

OnChar [ern [f f2 f3 f4] GC OnChar []]		

425
GUI programming / Frames / FrameDestroy

FrameDestroy aframe

Command to destroy the frame aframe . When a variable still points to the frame and you call
another FrameXXX primitive with that var then an error occurs, because the frame has then been
destroyed and cannot be used anymore. 		

Example: 		

f=Frame [][MyFrame][][400 200][200 100]
FrameDestroy f

FrameOnChar aframe commands

Command to set the custom event handler for the char event of the frame aframe to commands .
See also OnChar! 		

Example: 		

f=Frame [][MyFrame][][400 200][200 100]
FrameOnChar f [pr KeyboardValue]

FrameOnKeyDown aframe commands

Command to set the custom event handler for the key down event of the frame aframe to
commands . See also OnKeyDown! 		

Example: 		

f=Frame [][MyFrame][][400 200][200 100]
FrameOnKeyDown f [pr KeyboardValue]

426
GUI programming / Frames / FrameOnKeyUp

FrameOnKeyUp aframe commands

Command to set the custom event handler for the key up (=release) event of the frame aframe to
commands . See also OnKeyUp! 		

Example: 		

f=Frame [][MyFrame][][400 200][200 100]
FrameOnKeyUp f [pr KeyboardValue]

FrameSetFocus aframe

Command to set the keyboard and mouse input focus to the frame aframe . 		

Example: 		

f=Frame [][MyFrame][][100 200][200 100]
f2=Frame [][MyFrame][][400 200][200 100]
FrameSetFocus f

FrameEnable aframe state

Command to enable or disable the frame aframe . 		

 state is a boolean. If state is false, aframe and all its children will be disabled, that means, no
more user input is accepted. 		

Examples: 		

427
GUI programming / Frames / FrameEnable

f=Frame [][MyFrame] wxStay_on_top [100 200][200 100]
b=Button f [Close][ern "f GC]
FrameEnable f false
;try to press the button - nothing happens!
FrameEnable f true
;try to press the button again - fd 100 executed!

FrameMaximize aframe state

command to maximize the frame aframe if state is true. Else the normal layout will be restored. 		

Example: 		

f=Frame [][MyFrame] wxDefault_Frame_Style [100 200][200 100]
FrameMaximize f true
FrameMaximize f false

FrameIconize aframe state

command to iconize the frame aframe if state is true. Else the normal layout will be restored. 		

Example: 		

f=Frame [][MyFrame] wxDefault_Frame_Style [100 200][200 100]
FrameIconize f true
FrameIconize f false

FrameFullScreen aframe state style

command to show the frame aframe fullscreen if state is true. Else the normal layout will be
restored. 		

428
GUI programming / Frames / FrameFullScreen

 style can be a combination of the following constants, which indicate what elements of the
window to hide in full-screen mode: 		

wxFULLSCREEN_NOMENUBAR
wxFULLSCREEN_NOTOOLBAR
wxFULLSCREEN_NOSTATUSBAR
wxFULLSCREEN_NOBORDER
wxFULLSCREEN_NOCAPTION
wxFULLSCREEN_ALL (all of the above)

Example: 		

f=Frame [][MyFrame] wxDefault_Frame_Style [100 200][200 100]
FrameFullScreen f true wxFULLSCREEN_ALL
FrameFullScreen f false 0

FrameSetClientSize aframe width height

Command to set the client size of the Frame aframe . The client size is the interior of the frame,
which is, what mostly has to be set instead of the complete window size in Frame. 		

 width and height are integer numbers. 		

Example: 		

f=Frame [][MyFrame] wxStay_on_top [100 200][200 100]
b=(Button f [Close][ern "f GC] 0 [-1 -1][100 40])
FrameSetClientSize f 100 40

FrameSetColor aframe acolor

Command to set the foreground color of the Frame aframe to acolor , which must be a valid color
(see SetPenColor!). 		

429
GUI programming / Frames / FrameSetColor

Example: 		

f=Frame [][MyFrame] wxdefault_frame_style [100 200][200 100]
FrameSetColor f "red
ic=IntControl f [number one] 0 1234 4321 []

FrameSetBackgroundColor aframe acolor

Command to set the background color of the Frame aframe to acolor , which must be a valid
color (see SetPenColor!). 		

Example: 		

f=Frame [][MyFrame] wxdefault_frame_style [100 200][200 100]
FrameSetBackgroundColor f rgb 1 0 0
b=(Button f [Close][ern "f GC] 0 [-1 -1][100 40])

FrameSetFontSize aframe size

Command to set the font size of the Frame aframe to size , which must be a integer number. 		

Example: 		

f=Frame [][MyFrame] wxdefault_frame_style [100 200][200 100]
FrameSetFontSize f 50
b=(Button f [Close][ern "f GC] 0 [-1 -1][200 70])

FrameSetFontName aframe size

Command to set the font name of the Frame aframe to name, which must be a valid font name. 		

430
GUI programming / Frames / FrameSetFontName

Example: 		

f=Frame [][MyFrame] wxdefault_frame_style [100 200][200 100]
FrameSetFontName f [Courier]
b=(Button f [Close][ern "f GC] 0 [-1 -1][200 70])

FrameSetFontStyle aframe style

Command to set the font style of the Frame aframe . 		

 style can be one of the constants wxFONTSTYLE_NORMAL wxFONTSTYLE_SLANT
wxFONTSTYLE_ITALIC. 		

Example: 		

f=Frame [][MyFrame] wxdefault_frame_style [100 200][200 100]
FrameSetFontStyle f wxFONTSTYLE_ITALIC
b=(Button f [Close][ern "f GC] 0 [-1 -1][200 70])

FrameSetFontWeight aframe weight

Command to set the font weight of the Frame aframe . 		

 weight can be one of the constants wxFONTWEIGHT_NORMAL wxFONTWEIGHT_LIGHT
wxFONTWEIGHT_BOLD 		

Example: 		

f=Frame [][MyFrame] wxdefault_frame_style [100 200][200 100]
FrameSetFontWeight f wxFONTWEIGHT_BOLD
b=(Button f [Close][ern "f GC] 0 [-1 -1][200 70])

431
GUI programming / Frames / FrameSetShape

FrameSetShape aframe ashape

Command to set the shape of the Frame aframe to the shape ashape . 		

 ashape must be a list of positions. 		

A position in this context is a list of two integer numbers representing x and y. [0 0] is at the top left
position of the client area. 		

Example: 		

f=(Frame [][MyFrame]
 wxdefault_frame_style+wxFRAME_SHAPED
 [100 200][200 100])
b=(Button f [Close][ern "f GC] 0 [-1 -1][200 100])
FrameSetClientSize f 200 100
FrameSetShape f [[0 0][200 0][100 100]]

FrameSetSizer aframe asizer

Command to set the sizer asizer for the Frame aframe . Currently only BoxSizer is supported as
sizer. 		

Example: 		

f=Frame [][MyFrame] wxdefault_frame_style [100 200][100 200]
b1=Button f [Close][ern "f GC]
b2=Button f [fd 100][fd 100 updateGraph]
b3=Button f [back 100][back 100 updateGraph]
bs=BoxSizer wxVertical
BoxSizerAdd bs b1 100 wxExpand 0
BoxSizerAdd bs b2 200 wxExpand 10
BoxSizerAdd bs b3 200 wxExpand 20
FrameSetSizer f bs

432
GUI programming / Graphs

Graphs

A Graph is a Logo drawing area, where you can draw anything Logo can draw in the main Graph
window. Using a Graph and its event handlers you can write your own Control in Logo. 		

Graphs

• Graph 432
• GraphDestroy 433
• GraphCurrent 433
• GraphSetCurrent 434
• GraphOnChar 434
• GraphOnKeyDown 435
• GraphOnKeyUp 435
• GraphOnMouseLeftDown 435
• GraphOnMouseRightDown 436
• GraphOnMouseMiddleDown 436
• GraphOnMouseLeftUp 436
• GraphOnMouseRightUp 437
• GraphOnMouseMiddleUp 437
• GraphOnMouseLeftDClick 437
• GraphOnMouseRightDClick 437
• GraphOnMouseMiddleDClick 438
• GraphOnMouseMotion 438

Graph parent
(Graph parent style pos size name)

Operation which outputs a new Graph, a Logo drawing area. 		

 parent can be a Frame or a Graph. 		

 style can be a combination of the standard Window Styles, but probably will be just
wxFULL_REPAINT_ON_RESIZE, which is the default value and will also be set if style is the
empty list []. 		

 pos is a list of two integer numbers representing x and y position. 		

433
GUI programming / Graphs / Graph

 size is a list of two integer numbers representing width and height. 		

Like all window or control positions and sizes the value -1 for a coordinate means that wxWidgets
will use the default value. This is especially useful when you use sizers, so you mostly don't need to
figure out the coordinates yourself, for i.e. Buttons or other controls. 		

 name is the internal name of the window, it's mostly unused. 		

Output is the created Graph. 		

Example: 		

f=(Frame [][MyFrame]
 wxResize_Border+wxCaption+wxSystem_Menu+wxClose_Box
 +wxFull_Repaint_on_Resize+wxStay_on_Top
 ;wxDefault_Frame_Style+wxStay_on_Top)
 [100 100][400 300])
FrameSetClientSize f 400 300
g=(Graph f
 wxDefault_Frame_Style+wxFull_Repaint_on_Resize+wxStay_on_Top
 [0 0][400 300][Graph])

GraphDestroy agraph

Command to destroy the Graph agraph . When a variable still points to the graph and you call
another GraphXXX primitive with that var then an error occurs, because the graph has then been
destroyed and cannot be used anymore. Sometimes you need to resize the parent frame a bit to
clean rubbish from the graph, I don't know why but it helps. 		

Example: 		

f=Frame [][MyFrame][][100 100][400 300]
g=Graph f
FrameSetClientSize f 400 300
boundingbox
rbox
GraphDestroy g

434
GUI programming / Graphs / GraphCurrent

GraphCurrent

outputs the currently active Graph. 		

Example: 		

g=(Graph GraphCurrent
 wxFull_Repaint_on_Resize
 [100 100][200 150])
boundingbox
rbox

GraphSetCurrent agraph

Command to set the Graph agraph as current graph. 		

Examples: 		

g=GraphCurrent
g1=(Graph g
 wxFull_Repaint_on_Resize
 [100 100][200 150])
g2=(Graph g
 wxFull_Repaint_on_Resize
 [400 100][200 150])
boundingbox
rbox
GraphSetCurrent g1
tree
GraphSetCurrent []
rboxes

GraphOnChar agraph commands

435
GUI programming / Graphs / GraphOnChar

This command sets the Logo event handler for a char event of the Graph agraph . A char event is
generated when a key is pressed or held down longer. 		

Example: 		

GraphOnChar GraphCurrent [pr KeyboardValue]
;activate the graph and type something!
GraphOnChar GraphCurrent [] ;reset

GraphOnKeyDown agraph commands

This command sets the Logo event handler for a key down event of the Graph agraph . A key
down event is generated when a key is pressed or held down longer. 		

Example: 		

GraphOnKeyDown GraphCurrent [pr KeyboardValue]
;activate the graph and type something!
GraphOnKeyDown GraphCurrent [] ;reset

GraphOnKeyUp agraph commands

This command sets the Logo event handler for a key up event of the Graph agraph . A key up
event is generated when a key is released from the pressed state. 		

Example: 		

GraphOnKeyUp GraphCurrent [pr KeyboardValue]
;activate the graph and type something!
GraphOnKeyUp GraphCurrent [] ;reset

GraphOnMouseLeftDown agraph commands

436
GUI programming / Graphs / GraphOnMouseLeftDown

This command sets the Logo event handler for a mouse left button down event of the Graph
window agraph . 		

Example: 		

g=(Graph GraphCurrent
 wxFull_Repaint_on_Resize
 [100 100][200 150])
GraphOnMouseLeftDown g [PenDown]
GraphOnMouseLeftUp g [PenUp]
GraphOnMouseMotion g [setPosXYZ MousePos updateGraph]

GraphOnMouseRightDown agraph commands

This command sets the Logo event handler for a mouse right button down event of the Graph
window agraph . 		

Example: 		

(GraphOnMouseRightDown GraphCurrent
 [setPosXYZ MousePos fill updateGraph])

GraphOnMouseMiddleDown agraph commands

This command sets the Logo event handler for a mouse middle button down event of the Graph
window agraph . 		

Example: 		

GraphOnMouseMiddleDown GraphCurrent [pr MousePos]		

GraphOnMouseLeftUp agraph commands

437
GUI programming / Graphs / GraphOnMouseLeftUp

This command sets the Logo event handler for a mouse left button up (=release) event of the Graph
window agraph . 		

Example: 		

GraphOnMouseLeftUp GraphCurrent [pr [up!]]		

GraphOnMouseRightUp agraph commands

This command sets the Logo event handler for a mouse right button up (=release) event of the
Graph window agraph . 		

Example: 		

GraphOnMouseRightUp GraphCurrent [pr [up!]]		

GraphOnMouseMiddleUp agraph commands

This command sets the Logo event handler for a mouse middle button up (=release) event of the
Graph window agraph . 		

Example: 		

GraphOnMouseMiddleUp GraphCurrent [pr [up!]]		

GraphOnMouseLeftDClick agraph commands

This command sets the Logo event handler for a mouse left button double click event of the Graph
window agraph . 		

Example: 		

GraphOnMouseLeftDClick GraphCurrent [pr [doubleclick!]]		

438
GUI programming / Graphs / GraphOnMouseRightDClick

GraphOnMouseRightDClick agraph commands

This command sets the Logo event handler for a mouse right button double click event of the Graph
window agraph . 		

Example: 		

GraphOnMouseRightDClick GraphCurrent [pr [doubleclick!]]		

GraphOnMouseMiddleDClick agraph commands

This command sets the Logo event handler for a mouse middle button double click event of the
Graph window agraph . 		

Example: 		

GraphOnMouseMiddleDClick GraphCurrent [pr [doubleclick!]]		

GraphOnMouseMotion agraph commands

This command sets the Logo event handler for a mouse motion event of the Graph window agraph
. 		

Example: 		

GraphOnMouseMotion GraphCurrent [setPosXYZ MousePos
updateGraph]		

439
GUI programming / BoxSizers

BoxSizers

The main window layout mechanism of wxWidgets is supported with the constructor BoxSizer and
the applicable primitives. 		

Be aware of the command FrameSetSizer: it enables a sizer on a Frame. 		

The best demo for the BoxSizers is probably buttontest.lg, because here you see the benefit of not
having to figure out all the coordinates yourself, but letting this tedious work do the BoxSizers. 		

BoxSizers

• BoxSizer 439
• BoxSizerAdd 440
• BoxSizerDestroy 442

BoxSizer orient

outputs a new BoxSizer with the orientation orient . 		

 orient can be either wxHORIZONTAL or wxVERTICAL. 		

Examples: 		

440
GUI programming / BoxSizers / BoxSizer

f=(Frame [][MyFrame]
 wxFrame_Tool_Window+wxCaption+wxClose_Box
 +wxSystem_Menu+wxResize_Border+wxTab_traversal+wxStay_on_Top
 [200 200][-1 -1])
bfd=(Button f [&forward]
[forward 100
 updateGraph
])
blt=(Button f [&left]
[left 30
 updateGraph
])
brt=(Button f [&right]
[right 30
 updateGraph
])
bbk=(Button f [&back]
[back 100
 updateGraph
])
bs=BoxSizer wxVertical
BoxSizerAdd bs bfd 100 wxExpand 0
bsrl=BoxSizer wxHorizontal
BoxSizerAdd bsrl blt 100 wxExpand 0
BoxSizerAdd bsrl brt 100 wxExpand 0
BoxSizerAdd bs bsrl 100 wxExpand 0
BoxSizerAdd bs bbk 100 wxExpand 0
FrameSetSizer f bs

BoxSizerAdd aboxsizer acontrol proportion flag border

Command to add the control acontrol to the BoxSizer aboxsizer . 		

 proportion indicates, if a child of a sizer can change its size in the main orientation of the
BoxSizer - where 0 stands for not changeable and a value of more than zero is interpreted relative to
the value of other children of the same BoxSizer. For example, you might have a horizontal
BoxSizer with three children, two of which are supposed to change their size with the sizer. Then

441
GUI programming / BoxSizers / BoxSizerAdd

the two stretchable windows would get a value of 1 each to make them grow and shrink equally
with the sizer's horizontal dimension. As another example you can have a BoxSizer with two
children of whom the first shall be 150% of the size of the second, then you'd add the first child
with a proportion of 150, and the second child with a proportion of 100. 		

 flag can be used to set a number of flags which can be combined using the binary OR BitOr (or +
in most cases). Two main behaviours are defined using these flags. One is the border around a
window: the border parameter determines the border width whereas the flags given here
determine which side(s) of the item that the border will be added. The other flags determine how
the sizer item behaves when the space allotted to the sizer changes, and is somewhat dependent on
the specific kind of sizer used. 		

wxTOP 		

wxBOTTOM 		

wxLEFT 		

wxRIGHT 		

wxALL These flags are used to specify which side(s) of the sizer item the border width will apply
to. 		

wxEXPAND The item will be expanded to fill the space assigned to the item. 		

wxSHAPED The item will be expanded as much as possible while also maintaining its aspect ratio
		

wxFIXED_MINSIZE Normally wxSizers will use GetAdjustedBestSize to determine what the
minimal size of window items should be, and will use that size to calculate the layout. This allows
layouts to adjust when an item changes and its best size becomes different. If you would rather have
a window item stay the size it started with then use wxFIXED_MINSIZE. 		

wxALIGN_CENTER 		

wxALIGN_LEFT 		

wxALIGN_RIGHT 		

wxALIGN_TOP 		

442
GUI programming / BoxSizers / BoxSizerAdd

wxALIGN_BOTTOM 		

wxALIGN_CENTER_VERTICAL 		

wxALIGN_CENTER_HORIZONTAL The wxALIGN flags allow you to specify the alignment of
the item within the space allotted to it by the sizer, adjusted for the border if any. 		

 border determines the border width, if the flag parameter is set to include any border flag . 		

For examples see BoxSizer! 		

BoxSizerDestroy aboxsizer

Command to destroy the BoxSizer aboxsizer . 		

443
GUI programming / Buttons

Buttons

...are little windows containing a text label, which can run a Logo instructionlist when the user
clicks with the mouse on them. A good start to check out the ButtonXXX primitives is buttontest.lg.
		

Buttons

• Button 443
• ButtonDestroy 444
• ButtonOnClick 444
• ButtonEnable 444

Button parent alabel onclick
(Button parent alabel onclick style apos size)

outputs a new Button on the parent (a Frame or a Graph), 		

having the text alabel on it, 		

and running the onclick instructionlist when the user clicks with the mouse on it. 		

 style can be a combination (use +) of the following constants: 		

wxBU_LEFT Left-justifies the label. Windows and GTK+ only. 		

wxBU_TOP Aligns the label to the top of the button. Windows and GTK+ only. 		

wxBU_RIGHT Right-justifies the bitmap label. Windows and GTK+ only. 		

wxBU_BOTTOM Aligns the label to the bottom of the button. Windows and GTK+ only. 		

wxBU_EXACTFIT Creates the button as small as possible instead of making it of the standard
size (which is the default behaviour). 		

444
GUI programming / Buttons / Button

wxNO_BORDER Creates a flat button. Windows and GTK+ only. 		

 apos is the position of the Button (a list of two integer numbers, x and y), 		

 size is the size of the Button (again a list of two integer numbers, width and height). 		

Examples: 		

bfd=Button [][Go!][fd 100 updateGraph]
bback=(Button [][Go!][back 100 updateGraph]
 wxBU_LEFT+wxBU_TOP [0 100][200 100])

ButtonDestroy abutton

destroys the Button abutton . 		

Example: 		

bfd=Button [][Go!][fd 100 updateGraph]
ButtonDestroy bfd

ButtonOnClick abutton instructionlist

sets the onClick event handler of the Button abutton to the commands in the instructionlist . 		

Examples: 		

bfd=Button [][Go!][fd 100 updateGraph]
ButtonOnClick bfd [fd 10 updateGraph] ;slow motion!
ButtonOnClick bfd [] ;like disabling the Button

445
GUI programming / Buttons / ButtonEnable

ButtonEnable abutton state

if state is true then it enables the Button abutton , if state is false then it disables the Button. 		

Example: 		

bfd=Button [][Go!][fd 100 updateGraph]
;Click on the Button - it goes
ButtonEnable bfd false
;Click on the Button again --nothing happens
ButtonEnable bfd true ;enabled again

446
GUI programming / CheckBoxes

CheckBoxes

...are little windows containing a check box and a text label, which can run a Logo instructionlist
when the user clicks with the mouse on them and checks or unchecks them. CheckBoxes are
demonstrated in buttontest.lg. 		

CheckBoxes

• CheckBox 446
• CheckBoxDestroy 447
• CheckBoxOnClick 447
• CheckBoxValue 448
• CheckBoxSet 448
• CheckBoxEnable 448

CheckBox parent alabel onclick
(CheckBox parent alabel onclick style apos size)

outputs a new CheckBox on the parent (a Frame or a Graph), 		

having the text alabel on it, 		

and running the onclick instructionlist when the user clicks with the mouse on it. 		

 style can be a combination (use +) of the following constants: 		

wxCHK_2STATE Create a 2-state checkbox. This is the default. 		

wxCHK_3STATE Create a 3-state checkbox. Not implemented in wxMGL, wxOS2 and wxGTK
built against GTK+ 1.2. 		

wxCHK_ALLOW_3RD_STATE_FOR_USER By default a user can't set a 3-state checkbox to the
third state. It can only be done from code. Using this flags allows the user to set the checkbox to the
third state by clicking. 		

447
GUI programming / CheckBoxes / CheckBox

wxALIGN_RIGHT Makes the text appear on the left of the checkbox. 		

 apos is the position of the Button (a list of two integer numbers, x and y), 		

 size is the size of the Button (again a list of two integer numbers, width and height). 		

Examples: 		

cbpd=CheckBox [][Pen Down][
 ifelse CheckBoxValue cbpd [PenDown][PenUp]
 updateGraph]
cbht=(CheckBox [][Hide Turtle][
 ifelse CheckBoxValue cbht [hideTurtle][showTurtle]
 updateGraph]
 wxBU_LEFT+wxBU_TOP [0 100][200 100])

CheckBoxDestroy acheckbox

Command that destroys the CheckBox acheckbox . 		

Example: 		

cbht=CheckBox [][Hide Turtle][
 ifelse CheckBoxValue cbht [hideTurtle][showTurtle]
 updateGraph]
CheckBoxDestroy cbht

CheckBoxOnClick acheckbox instructionlist

Command that sets the onClick event handler of the CheckBox acheckbox to the commands in the
instructionlist . 		

448
GUI programming / CheckBoxes / CheckBoxOnClick

Examples: 		

cb=CheckBox [][Hide Turtle][
 ifelse CheckBoxValue cb [hideTurtle][showTurtle]
 updateGraph]
CheckBoxOnClick cb [
 ifelse CheckBoxValue cb [pr [Yes, Sir!]][pr [No, Sir!]]
 updateGraph]
CheckBoxOnClick cb [] ;like disabling the CheckBox

CheckBoxValue acheckbox

outputs true if the CheckBox acheckbox is checked, false otherwise. 		

Example: 		

cb=CheckBox [][Hide Turtle][
 ifelse CheckBoxValue cb [hideTurtle][showTurtle]
 updateGraph]

CheckBoxSet acheckbox state

Command that sets the CheckBox acheckbox to checked if state is true, to unchecked if false. 		

 state must be a boolean. 		

Example: 		

cb=CheckBox [][Hide Turtle][
 ifelse CheckBoxValue cb [hideTurtle][showTurtle]
 updateGraph]
CheckBoxSet bc shown?

449
GUI programming / CheckBoxes / CheckBoxEnable

CheckBoxEnable acheckbox state

Command. If state is true then it enables the CheckBox acheckbox , if state is false then it
disables the CheckBox. 		

 state must be a boolean. 		

Example: 		

cb=CheckBox [][Hide Turtle][
 ifelse CheckBoxValue cb [hideTurtle][showTurtle]
 updateGraph]
CheckBoxEnable bfd false
;Click on the CheckBox again --nothing happens
CheckBoxEnable bfd true ;enabled again

450
GUI programming / ChoiceBoxes

ChoiceBoxes

...are little windows containing a text label and a pulldown menulike list of text choices, which can
run a Logo instructionlist when the user clicks with the mouse on them and selects a choice, and
when a key event is received. The corresponding demo is choiceboxtest.lg. 		

ChoiceBoxes

• ChoiceBox 450
• ChoiceBoxDestroy 451
• ChoiceBoxSelection 451
• ChoiceBoxSetSelection 452
• ChoiceBoxSetChoices 452
• ChoiceBoxAppend 453
• ChoiceBoxSetItem 453
• ChoiceBoxRemoveItem 454
• ChoiceBoxCount 454
• ChoiceBoxSetBackgroundColor 455
• ChoiceBoxSetColor 455
• ChoiceBoxSetFontSize 456
• ChoiceBoxSetFontName 456
• ChoiceBoxSetFontStyle 457
• ChoiceBoxSetFontWeight 457
• ChoiceBoxOnChar 458
• ChoiceBoxOnKeyDown 458
• ChoiceBoxOnKeyUp 459
• ChoiceBoxOnSelect 459
• ChoiceBoxEnable 460

ChoiceBox parent name choices onSelect
(ChoiceBox parent name choices onSelect style pos size)

outputs a new ChoiceBox and shows it on the parent (a Frame or a Graph, main Graph if []).
Unlike a listbox, only the selection is visible until the user pulls down the menu of choices . 		

 name is its label text. 		

451
GUI programming / ChoiceBoxes / ChoiceBox

 choices is a list of items from whom the user can select one. 		

 onSelect is a Logo instructionlist which will be run when the user selects a choice. 		

 style is the window style , nothing special here, it defaults to zero. 		

 pos is the position of the ChoiceBox (a list of two integer numbers, x and y), 		

 size is the size of the ChoiceBox (a list of two integer numbers, width and height). 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])

ChoiceBoxDestroy achoicebox

Command that destroys the ChoiceBox achoicebox . 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxDestroy cb

452
GUI programming / ChoiceBoxes / ChoiceBoxSelection

ChoiceBoxSelection
(ChoiceBoxSelection achoicebox)

outputs the selection of the ChoiceBox achoicebox , or if called without an argument, of the
ChoiceBox that processed the last OnSelect event. 		

The output value is a zero-based integer, representing the nth choice. 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])

ChoiceBoxSetSelection achoicebox selection

Command to set the selection of the ChoiceBox achoicebox to the value selection . 		

 selection is a zero-based integer index into the choices, which must be less than the number of
choices in the control. 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxSetSelection cb 2

453
GUI programming / ChoiceBoxes / ChoiceBoxSetChoices

ChoiceBoxSetChoices achoicebox choices

Command to set the contents of the ChoiceBox achoicebox to choices . 		

 choices must be a list of items, whose texts will be the choices in the ChoiceBox. 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox][]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxSetChoices cb [
 [String 1]
 [and a second string]
 [and the last string]
]

ChoiceBoxAppend achoicebox choice

Command to append the text of the thing choice to the choices of ChoiceBox achoicebox . 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxAppend cb [and the last string]

ChoiceBoxSetItem achoicebox index choice

454
GUI programming / ChoiceBoxes / ChoiceBoxSetItem

Command to change the item at position index of the ChoiceBox achoicebox to the text of the
thing choice . 		

 index must be an integer number index >= 0 and index < number of choices in the ChoiceBox. 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxSetItem cb 1 [a changed item]

ChoiceBoxRemoveItem achoicebox index

Command to remove the choice item at position index from the ChoiceBox achoicebox . 		

 index must be an integer number index >= 0 and index < number of choices in the ChoiceBox. 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxRemoveItem cb 1

ChoiceBoxCount achoicebox

455
GUI programming / ChoiceBoxes / ChoiceBoxCount

outputs the number of choices in the ChoiceBox achoicebox . 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
show ChoiceBoxCount cb

ChoiceBoxSetBackgroundColor achoicebox color

Command to set the background color of the ChoiceBox achoicebox to the color color . 		

 color must be a valid color , see also setPenColor! 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxSetBackgroundColor cb "red

ChoiceBoxSetColor achoicebox color

Command to set the foreground color of the ChoiceBox achoicebox to the color color . 		

456
GUI programming / ChoiceBoxes / ChoiceBoxSetColor

 color must be a valid color , see also setPenColor! 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxSetColor cb "red

ChoiceBoxSetFontSize achoicebox size

Command to set the font size of the ChoiceBox achoicebox to size , which must be a integer
number. 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxSetFontSize cb 50

ChoiceBoxSetFontName achoicebox name

Command to set the font name of the ChoiceBox achoicebox to name , which must be a valid
font name . 		

457
GUI programming / ChoiceBoxes / ChoiceBoxSetFontName

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxSetFontName cb [Courier]

ChoiceBoxSetFontStyle achoicebox style

Command to set the font style of the ChoiceBox achoicebox . 		

 style can be one of the constants wxFONTSTYLE_NORMAL wxFONTSTYLE_SLANT
wxFONTSTYLE_ITALIC. 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxSetFontStyle cb wxFONTSTYLE_ITALIC

ChoiceBoxSetFontWeight achoicebox weight

Command to set the font weight of the ChoiceBox achoicebox . 		

 weight can be one of the constants wxFONTWEIGHT_NORMAL wxFONTWEIGHT_LIGHT

458
GUI programming / ChoiceBoxes / ChoiceBoxSetFontWeight

wxFONTWEIGHT_BOLD 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxSetFontWeight cb wxFONTWEIGHT_BOLD

ChoiceBoxOnChar achoicebox commands

Command to set the custom event handler for the char event of the ChoiceBox achoicebox to
commands . See also OnChar! 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxOnChar cb [pr KeyboardValue]

ChoiceBoxOnKeyDown achoicebox commands

Command to set the custom event handler for the key down event of the ChoiceBox achoicebox to
 commands . See also OnKeyDown! 		

459
GUI programming / ChoiceBoxes / ChoiceBoxOnKeyDown

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxOnKeyDown cb [pr KeyboardValue]

ChoiceBoxOnKeyUp achoicebox commands

Command to set the custom event handler for the key up (=release) event of the ChoiceBox
achoicebox to commands . See also OnKeyUp! 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxOnKeyUp cb [pr KeyboardValue]

ChoiceBoxOnSelect achoicebox commands

Command to set the custom event handler for the select event of the ChoiceBox achoicebox to
commands . The select event is generated when the user selects a choice with a mouseclick or a
keypress. 		

Example: 		

460
GUI programming / ChoiceBoxes / ChoiceBoxOnSelect

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxOnSelect cb [pr ChoiceBoxSelection]

ChoiceBoxEnable achoicebox state

Command. If state is true then it enables the ChoiceBox achoicebox , if state is false then it
disables the ChoiceBox. 		

 state must be a boolean. 		

Example: 		

cb=(ChoiceBox [][MyChoiceBox]
[[String 1]
 [and a second string]
 [and the last string]
]
[(show "|MyChoiceBox| ChoiceBoxSelection)
])
ChoiceBoxEnable cb false
;Click on the ChoiceBox again --nothing happens
ChoiceBoxEnable cb true ;enabled again

461
GUI programming / ComboBoxes

ComboBoxes

A ComboBox is like a combination of an edit control and a ListBox. It can be displayed as static list
with editable or read-only text field; or a drop-down list with text field; or a drop-down list without
a text field. 		

A ComboBox permits a single selection only. ComboBox items are numbered from zero. 		

A ComboBox can run a Logo instructionlist when the user clicks with the mouse on an item and
selects a choice, when the user changes the text or presses [Enter], and when any key event is
received. The corresponding demo is comboboxtest.lg. 		

ComboBoxes

• ComboBox 461
• ComboBoxDestroy 463
• ComboBoxSelection 463
• ComboBoxSetSelection 464
• ComboBoxSetChoices 465
• ComboBoxAppend 466
• ComboBoxSetItem 466
• ComboBoxRemoveItem 467
• ComboBoxCount 468
• ComboBoxValue 468
• ComboBoxSetValue 469
• ComboBoxSetBackgroundColor 470
• ComboBoxSetColor 471
• ComboBoxSetFontSize 472
• ComboBoxSetFontName 473
• ComboBoxSetFontStyle 474
• ComboBoxSetFontWeight 475
• ComboBoxOnChar 476
• ComboBoxOnKeyDown 477
• ComboBoxOnKeyUp 478
• ComboBoxOnSelect 479
• ComboBoxOnChange 480
• ComboBoxOnEnter 481
• ComboBoxEnable 482

462
GUI programming / ComboBoxes / ComboBox

ComboBox parent name text choices onSelect onChange onEnter
(ComboBox parent name text choices)
(ComboBox parent name text choices onSelect onChange onEnter style pos size)

outputs a new ComboBox and shows it on the parent (a Frame or a Graph, main Graph if []). 		

 name is its label text . 		

 text is the standard text shown in the edit control when the ComboBox is created. 		

 choices is a list of items from whom the user can select one. 		

 onSelect is a Logo instructionlist which will be run when the user selects a choice. 		

 onChange is a Logo instructionlist which will be run when the user changes the text in the edit
control. 		

 onEnter is a Logo instructionlist which will be run when the user presses the [Enter] key. 		

 style is the window style and can be a combination of the following constants: 		

wxCB_SIMPLE Creates a ComboBox with a permanently displayed list. Windows only. 		

wxCB_DROPDOWN Creates a ComboBox with a drop-down list. 		

wxCB_READONLY Same as wxCB_DROPDOWN but only the strings specified as the
ComboBox choices can be selected, it is impossible to select (even from a program) a string which
is not in the choices list. 		

wxCB_SORT Sorts the entries in the list alphabetically. 		

 pos is the position of the ComboBox (a list of two integer numbers, x and y), 		

 size is the size of the ComboBox (a list of two integer numbers, width and height). 		

Example: 		

463
GUI programming / ComboBoxes / ComboBox

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])

ComboBoxDestroy acombobox

Command that destroys the ComboBox acombobox . 		

Example: 		

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxDestroy cb

464
GUI programming / ComboBoxes / ComboBoxSelection

ComboBoxSelection
(ComboBoxSelection acombobox)

outputs the selection of the ComboBox acombobox , or if called without an argument, of the
ComboBox that processed the last ComboBox event. 		

The output value is a zero-based integer, representing the nth choice. 		

Example: 		

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])

ComboBoxSetSelection acombobox selection

Command to set the selection of the ComboBox acombobox to the value selection . 		

 selection is a zero-based integer index into the choices, which must be less than the number of
choices in the control. 		

Example: 		

465
GUI programming / ComboBoxes / ComboBoxSetSelection

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxSetSelection cb 1

ComboBoxSetChoices acombobox choices

Command to set the contents of the ComboBox acombobox to choices . 		

 choices must be a list of items, whose texts will be the choices in the ComboBox. 		

Example: 		

466
GUI programming / ComboBoxes / ComboBoxSetChoices

cb=(ComboBox [][MyComboBox][Initial string][]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxSetChoices cb [
 [String 1]
 [and a second string]
 [and the last string]
]

ComboBoxAppend acombobox choice

Command to append the text of the thing choice to the choices of ComboBox acombobox . 		

Example: 		

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])

467
GUI programming / ComboBoxes / ComboBoxSetItem

ComboBoxSetItem acombobox index choice

Command to change the item at position index of the ComboBox acombobox to the text of the
thing choice . 		

 index must be an integer number index >= 0 and index < (number of choices in the ComboBox).
		

Example: 		

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxSetItem cb 1 [Item 1 now]

ComboBoxRemoveItem acombobox index

Command to remove the choice item at position index from the ComboBox acombobox . 		

 index must be an integer number index >= 0 and index < (number of choices in the ComboBox).
		

Example: 		

468
GUI programming / ComboBoxes / ComboBoxRemoveItem

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxRemoveItem cb 1

ComboBoxCount acombobox

outputs the number of choices in the ComboBox acombobox . 		

Example: 		

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
show ComboBoxCount cb

469
GUI programming / ComboBoxes / ComboBoxValue

ComboBoxValue
(ComboBoxValue acombobox)

outputs the text in the edit control of the ComboBox acombobox or if called without argument, of
the ComboBox whose event is being processed lately. 		

Example: 		

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])

ComboBoxSetValue acombobox text

Command to set the text in the edit control of the ComboBox acombobox to text which will be
converted to a word first. 		

Example: 		

470
GUI programming / ComboBoxes / ComboBoxSetValue

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxSetValue cb [Hallo World!]

ComboBoxSetBackgroundColor acombobox color

Command to set the background color of the ComboBox acombobox to the color color . 		

 color must be a valid color , see also setPenColor! 		

Example: 		

471
GUI programming / ComboBoxes / ComboBoxSetBackgroundColor

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxSetBackgroundColor cb "red

ComboBoxSetColor acombobox color

Command to set the foreground color of the ComboBox acombobox to the color color . 		

 color must be a valid color , see also setPenColor! 		

Example: 		

472
GUI programming / ComboBoxes / ComboBoxSetColor

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxSetColor cb "red

ComboBoxSetFontSize acombobox size

Command to set the font size of the ComboBox acombobox to size , which must be a integer
number. 		

Example: 		

473
GUI programming / ComboBoxes / ComboBoxSetFontSize

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxSetFontSize cb 50

ComboBoxSetFontName acombobox name

Command to set the font name of the ComboBox acombobox to name , which must be a valid
font name . 		

Example: 		

474
GUI programming / ComboBoxes / ComboBoxSetFontName

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxSetFontName cb [Courier]

ComboBoxSetFontStyle acombobox style

Command to set the font style of the ComboBox acombobox . 		

 style can be one of the constants wxFONTSTYLE_NORMAL wxFONTSTYLE_SLANT
wxFONTSTYLE_ITALIC. 		

Example: 		

475
GUI programming / ComboBoxes / ComboBoxSetFontStyle

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxSetFontStyle cb wxFONTSTYLE_ITALIC

ComboBoxSetFontWeight acombobox weight

Command to set the font weight of the ComboBox acombobox . 		

 weight can be one of the constants wxFONTWEIGHT_NORMAL wxFONTWEIGHT_LIGHT
wxFONTWEIGHT_BOLD 		

Example: 		

476
GUI programming / ComboBoxes / ComboBoxSetFontWeight

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxSetFontWeight cb wxFONTWEIGHT_BOLD

ComboBoxOnChar acombobox commands

Command to set the custom event handler for the char event of the ComboBox acombobox to
commands . See also OnChar! 		

Example: 		

477
GUI programming / ComboBoxes / ComboBoxOnChar

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxOnChar cb [pr KeyboardValue]

ComboBoxOnKeyDown acombobox commands

Command to set the custom event handler for the key down event of the ComboBox acombobox to
 commands . See also OnKeyDown! 		

Example: 		

478
GUI programming / ComboBoxes / ComboBoxOnKeyDown

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxOnKeyDown cb [pr KeyboardValue]

ComboBoxOnKeyUp acombobox commands

Command to set the custom event handler for the key up (=release) event of the ComboBox
acombobox to commands . See also OnKeyUp! 		

Example: 		

479
GUI programming / ComboBoxes / ComboBoxOnKeyUp

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxOnKeyUp cb [pr KeyboardValue]

ComboBoxOnSelect acombobox commands

Command to set the custom event handler for the select event of the ComboBox acombobox to
commands . The select event is generated when the user selects a choice with a mouseclick or a
keypress. 		

Example: 		

480
GUI programming / ComboBoxes / ComboBoxOnSelect

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxOnSelect cb [pr ComboBoxSelection]

ComboBoxOnChange acombobox commands

Command to set the custom event handler for the change text event of the ComboBox acombobox
to commands . The change text event is generated when the user types some text into the edit
control. 		

Example: 		

481
GUI programming / ComboBoxes / ComboBoxOnChange

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxOnChange cb [pr ComboBoxValue]

ComboBoxOnEnter acombobox commands

Command to set the custom event handler for the enter key event of the ComboBox acombobox to
commands . The text enter event is generated when the user presses the enter or the return key. 		

Example: 		

482
GUI programming / ComboBoxes / ComboBoxOnEnter

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxOnEnter cb [pr ComboBoxValue]

ComboBoxEnable acombobox state

Command. If state is true then it enables the ComboBox acombobox , if state is false then it
disables the ComboBox. 		

 state must be a boolean. 		

Example: 		

483
GUI programming / ComboBoxes / ComboBoxEnable

cb=(ComboBox [][MyComboBox][Initial string]
 [[String 1]
 [and a second string]
 [and the last string]
]
 [(show "|MyComboBox| ComboBoxSelection)
]
 [(pr [change] ComboBoxValue)
]
 [v=ComboBoxValue
 (pr [enter] v)
 ComboBoxAppend cb v
]
 wxCB_simple [-1 -1][300 200])
ComboBoxEnable cb false
;Click on the ComboBox again --nothing happens
ComboBoxEnable cb true ;enabled again

484
GUI programming / FloatControls

FloatControls

A FloatControl is a little window containing a text label, an edit control for use with floating point
numbers, and a spinbutton. It holds the value of a floating point number, which can be changed by
the user by either typing, or with the arrow keys, or by clicking on the spinbuttton with the mouse. 		

FloatControl is demonstrated in floatcontroltest.lg. 		

FloatControls

• FloatControl 484
• FloatControlDestroy 485
• FloatControlValue 486
• FloatControlSetValue 486
• FloatControlSetRange 487
• FloatControlOnChange 487
• FloatControlEnable 488

FloatControl parent name min value max increment digits onChange
(FloatControl parent name min value max increment)
(FloatControl parent name min value max increment digits onChange format style pos
size)

outputs a new FloatControl on the parent (a Frame or a Graph, main Graph if []). 		

 name is the label text and the name of the control. 		

 min is the minimal allowed value that the control accepts. 		

 value is the number shown at startup of the control. 		

 max is the maximal allowed value that the control accepts. 		

 increment is the amount by which the arrow keys increase or decrease the value . 		

 min , value , max and increment are Logo numbers that will be converted to Float's internally. 		

485
GUI programming / FloatControls / FloatControl

 digits are the number of digits of the number behind the dot. It's an integer number and defaults
to 3 if not supplied. 		

 onChange is a command list that will be run if the OnChange event of the control is processed.
That's whenever the number in the control changes anyhow. 		

 format is an integer between 1 and 3, meaning 1="%f" (floating point), 2="%e" (exponential) and
3="%g" (Signed value printed in f or e format , whichever is more compact for the given value
and precision. The e format is used only when the exponent of the value is less than 4 or greater
than or equal to the precision argument. Trailing zeros are truncated, and the decimal point appears
only if one or more digits follow it.). 		

 style is the window style and can be the special value wxSP_ARROW_KEYS to which it
defaults. 		

 pos is the position of the ComboBox (a list of two integer numbers, x and y), 		

 size is the size of the ComboBox (a list of two integer numbers, width and height). 		

Example: 		

fcx=(FloatControl [] [X] -400 0 400 1.01 5
 [x=FloatControlValue
 ;(pr "x= x)
 setX x
 updateGraph
] 2 0 [10 20][-1 -1])

FloatControlDestroy afloatcontrol

Command to destroy the FloatControl afloatcontrol . 		

Example: 		

486
GUI programming / FloatControls / FloatControlDestroy

fcx=(FloatControl [] [X] -400 0 400 1.01 5
 [x=FloatControlValue
 ;(pr "x= x)
 setX x
 updateGraph
] 2 0 [10 20][-1 -1])
FloatControlDestroy fcx

FloatControlValue
(FloatControlValue afloatcontrol)

outputs the value of the FloatControl afloatcontrol or if called without arguments, of the
FloatControl whose event is being processed lately. 		

Example: 		

fcx=(FloatControl [] [X] -400 0 400 1.01 5
 [x=FloatControlValue
 ;(pr "x= x)
 setX x
 updateGraph
] 2 0 [10 20][-1 -1])

FloatControlSetValue afloatcontrol value

Command to set the value of the FloatControl afloatcontrol to the number value . 		

Example: 		

487
GUI programming / FloatControls / FloatControlSetValue

fcx=(FloatControl [] [X] -400 0 400 1.01 5
 [x=FloatControlValue
 ;(pr "x= x)
 setX x
 updateGraph
] 2 0 [10 20][-1 -1])
FloatControlSetValue fcx 123.456

FloatControlSetRange afloatcontrol min max

Command to set the range of valid numbers of the FloatControl afloatcontrol to stay between the
numbers min and max inclusive. 		

Example: 		

fcx=(FloatControl [] [X] -400 0 400 1.01 5
 [x=FloatControlValue
 ;(pr "x= x)
 setX x
 updateGraph
] 2 0 [10 20][-1 -1])
FloatControlSetRange fcx -10.11 20.22

FloatControlOnChange afloatcontrol commands

Command to set the OnChange event handler of the FloatControl afloatcontrol to the commandlist
 commands . 		

Example: 		

488
GUI programming / FloatControls / FloatControlOnChange

fcx=(FloatControl [] [X] -400 0 400 1.01 5
 [] 2 0 [10 20][-1 -1])
FloatControlOnChange fcx [
 x=FloatControlValue
 ;(pr "x= x)
 setX x
 updateGraph
]

FloatControlEnable afloatcontrol state

Command. If state is true then it enables the FloatControl afloatcontrol , if state is false then it
disables the FloatControl. 		

 state must be a boolean. 		

Example: 		

fcx=(FloatControl [] [X] -400 0 400 1.01 5
 [x=FloatControlValue
 ;(pr "x= x)
 setX x
 updateGraph
] 2 0 [10 20][-1 -1])
FloatControlEnable fcx false
;Click on the FloatControl again --nothing happens
FloatControlEnable fcx true ;enabled again

489
GUI programming / Gauges

Gauges

A Gauge is a little window containing a colored bar, that takes up some percentage of the width or
height of the Control. It shows the value of a integer number, represented by the size of the bar.
Gauge is read-only. 		

Gauge is demonstrated in gaugetest.lg. 		

Gauges

• Gauge 489
• GaugeDestroy 490
• GaugeValue 490
• GaugeSetValue 490
• GaugeSetRange 491
• GaugeSetColor 491
• GaugeSetBackgroundColor 491

Gauge parent name range
(Gauge parent name range value style pos size)

outputs a new Gauge on the parent (a Frame or a Graph, main Graph if []). 		

 name is the name of the control. 		

 range is the maximal allowed value that the control accepts. 		

 value is the number shown at startup of the control. 		

 range and value must be integer numbers. 		

 style is the window style and can be a combination of (wxGA_HORIZONTAL or
wxGA_VERTICAL) with wxGA_SMOOTH. 		

wxGA_HORIZONTAL Creates a horizontal Gauge. 		

wxGA_VERTICAL Creates a vertical Gauge. 		

490
GUI programming / Gauges / Gauge

wxGA_SMOOTH Creates smooth progress bar with one pixel wide update step (not supported by
all platforms). 		

 pos is the position of the Gauge (a list of two integer numbers, x and y), 		

 size is the size of the Gauge (a list of two integer numbers, width and height). 		

Example: 		

g=Gauge [][Gauge1] 400
g2=(Gauge [][Gauge1] 400 100 wxGA_horizontal+wxGA_smooth
 [0 200])

GaugeDestroy agauge

Command to destroy the Gauge agauge . 		

Example: 		

g=Gauge [][Gauge1] 400
GaugeDestroy g

GaugeValue agauge

outputs the integer value of the Gauge agauge . 		

Example: 		

g=(Gauge [][Gauge1] 400 123 wxGA_smooth)
show GaugeValue g

GaugeSetValue agauge value

491
GUI programming / Gauges / GaugeSetValue

Command to set the value of the Gauge agauge to the integer value . 		

Example: 		

g=(Gauge [][Gauge1] 400 123 wxGA_smooth)
GaugeSetValue g 321

GaugeSetRange agauge max

Command to set the range of valid numbers of the Gauge agauge to stay between 0 and the integer
number max . 		

Example: 		

g=(Gauge [][Gauge1] 400 123 wxGA_smooth)
GaugeSetRange g 333

GaugeSetColor agauge color

Command to set the foreground color of the Gauge agauge to the color color . 		

 color must be a valid color , see also setPenColor! 		

Example: 		

g=(Gauge [][Gauge1] 400 123 wxGA_smooth)
GaugeSetColor g "red

GaugeSetBackgroundColor agauge color

Command to set the bakcground color of the Gauge agauge to the color color . 		

492
GUI programming / Gauges / GaugeSetBackgroundColor

 color must be a valid color , see also setPenColor! 		

Example: 		

g=(Gauge [][Gauge1] 400 123 wxGA_smooth)
GaugeSetBackgroundColor g "blue

493
GUI programming / IntControls

IntControls

A IntControl is a little window containing a text label, an edit control for use with integer numbers,
and a spinbutton. It holds the value of an integer number, which can be changed by the user by
either typing, or with the arrow keys, or by clicking on the spinbuttton with the mouse. 		

IntControl is demonstrated in intcontroltest.lg. 		

IntControls

• IntControl 493
• IntControlDestroy 494
• IntControlValue 494
• IntControlSetValue 494
• IntControlSetRange 495
• IntControlOnChange 495
• IntControlEnable 495

IntControl parent name min value max onChange
(IntControl parent name min value max)
(IntControl parent name min value max onChange style pos size)

outputs a new IntControl on the parent (a Frame or a Graph, main Graph if []). 		

 name is the label text and the name of the control. 		

 min is the minimal allowed value that the control accepts. 		

 value is the number shown at startup of the control. 		

 max is the maximal allowed value that the control accepts. 		

 min , value and max must be integer numbers. 		

 onChange is a command list that will be run if the OnChange event of the control is processed.
That's whenever the number in the control changes anyhow. 		

494
GUI programming / IntControls / IntControl

 style is the window style and can be the special value wxSP_ARROW_KEYS to which it
defaults. 		

 pos is the position of the ComboBox (a list of two integer numbers, x and y), 		

 size is the size of the ComboBox (a list of two integer numbers, width and height). 		

Examples: 		

ic=(IntControl [][X] -400 0 400 [x=IntControlValue (pr "x= x)]) ic2=(IntControl [][Y] -400 0 400 [y=IntControlValue
 (pr "y= y)
] wxSP_Arrow_Keys [10 100][80 -1])

IntControlDestroy aintcontrol

Command to destroy the IntControl aintcontrol . 		

Example: 		

ic=(IntControl [][X] -400 0 400 [x=IntControlValue (pr "x= x)])
IntControlDestroy ic

IntControlValue
(IntControlValue aintcontrol)

outputs the integer value of the IntControl aintcontrol or if called without arguments, of the
IntControl whose event is being processed lately. 		

Example: 		

ic=(IntControl [][X] -400 0 400 [x=IntControlValue (pr "x= x)])		

IntControlSetValue aintcontrol value

495
GUI programming / IntControls / IntControlSetValue

Command to set the value of the IntControl aintcontrol to the integer number value . 		

Example: 		

ic=(IntControl [][X] -400 0 400 [x=IntControlValue (pr "x= x)])
IntControlSetValue ic 123.456

IntControlSetRange aintcontrol min max

Command to set the range of valid numbers of the IntControl aintcontrol to stay between the
numbers min and max inclusive. 		

Example: 		

ic=(IntControl [][X] -400 0 400 [x=IntControlValue (pr "x= x)])
IntControlSetRange ic -10.11 20.22

IntControlOnChange aintcontrol commands

Command to set the OnChange event handler of the IntControl aintcontrol to the commandlist
commands . 		

Example: 		

ic=IntControl [][X] -400 0 400 []
IntControlOnChange ic [
 x=IntControlValue
 ;(pr "x= x)
 setX x
 updateGraph
]

496
GUI programming / IntControls / IntControlEnable

IntControlEnable aintcontrol state

Command. If state is true then it enables the IntControl aintcontrol , if state is false then it
disables the IntControl. 		

 state must be a boolean. 		

Example: 		

ic=(IntControl [][X] -400 0 400 [x=IntControlValue (pr "x= x)])
IntControlEnable fcx false
;Click on the FloatControl again --nothing happens
IntControlEnable fcx true ;enabled again

497
GUI programming / ListBoxes

ListBoxes

...are little windows containing a text label and a list of text choices, which can run a Logo
instructionlist when the user clicks with the mouse on them and selects a choice, and when a key
event is received. 		

A listbox is used to select one or more of a list of strings. The strings are displayed in a scrolling
box, with the selected string(s) marked in reverse video. A listbox can be single selection (if an item
is selected, the previous selection is removed) or multiple selection (clicking an item toggles the
item on or off independently of other selections). 		

List box elements are numbered from zero. Their number is limited in some platforms (e.g. ca. 2000
on GTK). 		

The corresponding demo is listboxtest.lg. 		

ListBoxes

• ListBox 497
• ListBoxDestroy 499
• ListBoxSelections 499
• ListBoxSetSelections 500
• ListBoxSetChoices 500
• ListBoxAppend 500
• ListBoxSetItem 501
• ListBoxRemoveItem 501
• ListBoxCount 501
• ListBoxSetBackgroundColor 502
• ListBoxSetColor 502
• ListBoxSetFontSize 502
• ListBoxSetFontName 503
• ListBoxSetFontStyle 503
• ListBoxSetFontWeight 503
• ListBoxOnChar 504
• ListBoxOnKeyDown 504
• ListBoxOnKeyUp 504
• ListBoxOnSelect 505
• ListBoxOnDClick 505
• ListBoxEnable 505

498
GUI programming / ListBoxes / ListBox

ListBox parent name choices onSelect onDClick
(ListBox parent name choices)
(ListBox parent name choices onSelect onDClick style pos size)

outputs a new ListBox and shows it on the parent (a Frame or a Graph, main Graph if []). 		

 name is its label text. 		

 choices is a list of items from whom the user can select one. 		

 onSelect is a Logo instructionlist which will be run when the user selects a choice. 		

onDCLick is a Logo instructionlist which will be run when the user double-clicks on a choice. 		

 style is the window style and can be a combination of the following constants: 		

wxLB_SINGLE Single-selection list. 		

wxLB_MULTIPLE Multiple-selection list: the user can toggle multiple items on and off. 		

wxLB_EXTENDED Extended-selection list: the user can select multiple items using the SHIFT
key and the mouse or special key combinations. 		

wxLB_HSCROLL Create horizontal scrollbar if contents are too wide (Windows only). 		

wxLB_ALWAYS_SB Always show a vertical scrollbar. 		

wxLB_NEEDED_SB Only create a vertical scrollbar if needed. 		

wxLB_SORT The listbox contents are sorted in alphabetical order. 		

Note that wxLB_SINGLE, wxLB_MULTIPLE and wxLB_EXTENDED styles are mutually
exclusive and you can specify at most one of them (single selection is the default). 		

 pos is the position of the ChoiceBox (a list of two integer numbers, x and y), 		

499
GUI programming / ListBoxes / ListBox

 size is the size of the ChoiceBox (a list of two integer numbers, width and height). 		

Example: 		

lb=(ListBox [][MyListBox]
 [[String 1]
 [and a second string]
 [a third string]
 [and the last string]
]
 [(show "|MyListBox2| ListBoxSelections)
]
 [pr [Doubleclick]
]
 wxLB_multiple [0 0][300 200])

ListBoxDestroy alistbox

Command that destroys the ListBox alistbox . 		

Example: 		

lb=ListBox [][LB] [[String 1][S2][S3]] [][]
ListBoxDestroy lb

ListBoxSelections
(ListBoxSelections alistbox)

outputs the selections of the ListBox alistbox , or if called without an argument, of the ListBox that
processed the last event. 		

The output value is a list of zero-based integers, representing the nth choice. 		

Example: 		

500
GUI programming / ListBoxes / ListBoxSelections

lb=(ListBox [][LB] [[String 1][S2][S3]]
 [show ListBoxSelections][] wxLB_multiple)

ListBoxSetSelections achoicebox selections

Command to set the selections of the ListBox alistbox to the item numbers in the list selections . 		

 selections is a list of zero-based integer indices into the choices, which must be less than the
number of choices in the control. 		

Example: 		

lb=(ListBox [][LB] [[String 1][S2][S3]] [][] wxLB_multiple)
ListBoxSetSelections lb [0 2]

ListBoxSetChoices alistbox choices

Command to set the contents of the ListBox alistbox to choices . 		

 choices must be a list of items, whose texts will be the choices in the ListBox. 		

Example: 		

lb=ListBox [][LB] [][][]
ListBoxSetChoices lb [
 [First string]
 [and a second string]
 [and the last string]
]

ListBoxAppend alistbox choice

501
GUI programming / ListBoxes / ListBoxAppend

Command to append the text of the thing choice to the choices of ListBox alistbox . 		

Examples: 		

lb=ListBox [][LB] [][][]
ListBoxAppend lb [First string]
ListBoxAppend lb [and a second string]
ListBoxAppend lb [and the last string]

ListBoxSetItem alistbox index choice

Command to change the item at position index of the ListBox alistbox to the text of the thing
choice . 		

 index must be an integer number index >= 0 and index < (number of choices in the ListBox). 		

Example: 		

lb=ListBox [][LB] [[The first String][S2][S3]] [][]
ListBoxSetItem lb 1 [a changed item]

ListBoxRemoveItem alistbox index

Command to remove the choice item at position index from the ListBox alistbox . 		

 index must be an integer number index >= 0 and index < number of choices in the ListBox. 		

Example: 		

lb=ListBox [][LB] [[The first String][S2][Last String]] [][]
ListBoxRemoveItem lb 1

502
GUI programming / ListBoxes / ListBoxCount

ListBoxCount alistbox

outputs the number of choices in the ListBox alistbox . 		

Example: 		

lb=ListBox [][LB] [[The first String][S2][S3]] [][]
show ListBoxCount lb

ListBoxSetBackgroundColor alistbox color

Command to set the background color of the ListBox alistbox to the color color . 		

 color must be a valid color , see also setPenColor! 		

Example: 		

lb=ListBox [][LB] [[The first String][S2][S3]] [][]
ListBoxSetBackgroundColor lb "red

ListBoxSetColor alistbox color

Command to set the foreground color of the ListBox alistbox to the color color . 		

 color must be a valid color , see also setPenColor! 		

Example: 		

lb=ListBox [][LB] [[The first String][S2][S3]] [][]
ListBoxSetColor lb "red

503
GUI programming / ListBoxes / ListBoxSetFontSize

ListBoxSetFontSize alistbox size

Command to set the font size of the ListBox alistbox to size , which must be a integer number. 		

Example: 		

lb=ListBox [][LB] [[The first String][S2][S3]] [][]
ListBoxSetFontSize lb 50

ListBoxSetFontName alistbox name

Command to set the font name of the ListBox alistbox to name , which must be a valid font
name . 		

Example: 		

lb=ListBox [][LB] [[The first String][S2][S3]] [][]
ListBoxSetFontName lb [Courier]

ListBoxSetFontStyle alistbox style

Command to set the font style of the ListBox alistbox . 		

 style can be one of the constants wxFONTSTYLE_NORMAL wxFONTSTYLE_SLANT
wxFONTSTYLE_ITALIC. 		

Example: 		

lb=ListBox [][LB] [[The first String][S2][S3]] [][]
ListBoxSetFontStyle lb wxFONTSTYLE_ITALIC

504
GUI programming / ListBoxes / ListBoxSetFontWeight

ListBoxSetFontWeight alistbox weight

Command to set the font weight of the ListBox alistbox . 		

 weight can be one of the constants wxFONTWEIGHT_NORMAL wxFONTWEIGHT_LIGHT
wxFONTWEIGHT_BOLD 		

Example: 		

lb=ListBox [][LB] [[The first String][S2][S3]] [][]
ListBoxSetFontWeight lb wxFONTWEIGHT_BOLD

ListBoxOnChar alistbox commands

Command to set the custom event handler for the char event of the ListBox alistbox to commands
. See also OnChar! 		

Example: 		

lb=ListBox [][LB] [[The first String][S2][S3]] [][]
ListBoxOnChar lb [pr KeyboardValue]

ListBoxOnKeyDown alistbox commands

Command to set the custom event handler for the key down event of the ListBox alistbox to
commands . See also OnKeyDown! 		

Example: 		

lb=ListBox [][LB] [[The first String][S2][S3]] [][]
ListBoxOnKeyDown lb [pr KeyboardValue]

505
GUI programming / ListBoxes / ListBoxOnKeyUp

ListBoxOnKeyUp alistbox commands

Command to set the custom event handler for the key up (=release) event of the ListBox alistbox
to commands . See also OnKeyUp! 		

Example: 		

lb=ListBox [][LB] [[The first String][S2][S3]] [][]
ListBoxOnKeyUp lb [pr KeyboardValue]

ListBoxOnSelect alistbox commands

Command to set the custom event handler for the select event of the ListBox alistbox to
commands . The select event is generated when the user selects a choice with a mouseclick or a
keypress. 		

Example: 		

lb=ListBox [][LB] [[The first String][S2][S3]] [][]
ListBoxOnSelect lb [pr ListBoxSelections]

ListBoxOnDClick alistbox commands

Command to set the custom event handler for the mouse double-click event of the ListBox alistbox
 to commands . 		

Example: 		

lb=ListBox [][LB] [[The first String][S2][S3]] [][]
ListBoxOnDClick lb [pr ListBoxSelections]

506
GUI programming / ListBoxes / ListBoxEnable

ListBoxEnable alistbox state

Command. If state is true then it enables the ListBox alistbox , if state is false then it disables the
ListBox. 		

 state must be a boolean. 		

Example: 		

lb=ListBox [][LB] [[The first String][S2][S3]] [][]
ListBoxEnable lb false
;Click on the ListBox again --nothing happens
ListBoxEnable lb true ;enabled again

507
GUI programming / ListControls

ListControls

...are windows containing a text label and a list of lists of text choices, which can run a Logo
instructionlist when the user clicks with the mouse on them and selects an item, and when a key
event is received. 		

A list control presents lists in a number of formats: list view, report view, icon view and small icon
view. In any case, elements are numbered from zero. For all these modes, the items are stored in the
control and must be added to it using InsertItem method. 		

ListControls are demonstrated in listcontroltest.lg. 		

ListControls

• ListControl 508
• ListControlDestroy 510
• ListControlInsertColumn 511
• ListControlInsertItem 511
• ListControlSetItem 512
• ListControlGetItem 512
• ListControlDeleteItem 513
• ListControlSetRow 513
• ListControlSetColumn 514
• ListControlSet 515
• ListControlGetRow 515
• ListControlGetColumn 516
• ListControlGet 516
• ListControlItemCount 517
• ListControlColumnCount 517
• ListControlColumn 518
• ListControlRow 519
• ListControlText 520
• ListControlSort 521
• ListControlSetBackgroundColor 522
• ListControlSetColor 522
• ListControlSetFontSize 523
• ListControlSetFontName 523
• ListControlSetFontStyle 524
• ListControlSetFontWeight 524

508
GUI programming / ListControls

• ListControlOnChar 525
• ListControlOnKeyDown 525
• ListControlOnKeyUp 526
• ListControlOnItemSelected 526
• ListControlOnItemActivated 527
• ListControlOnColClick 527
• ListControlEnable 528

ListControl parent name onItemSelected onItemActivated onColClick
(ListControl parent name)
(ListControl parent name onItemSelected onItemActivated onColClick style pos size)

outputs a new ListControl lc and shows it on the parent (a Frame or a Graph, main Graph if []). 		

 name is its label text. 		

 onItemSelected is a Logo instructionlist which will be run when the user selects a list item. 		

 onItemActivated is a Logo instructionlist which will be run when the user activates a list item,
using either the [Enter] or [Space] key double-clicking with the mouse. 		

 onColClick is a Logo instructionlist which will be run when the user left-clicks a column label
with the mouse. 		

 style is the window style and can be a combination of the following constants: 		

wxLC_LIST Multicolumn list view, with optional small icons. Columns are computed
automatically, i.e. you don't set columns as in wxLC_REPORT. In other words, the list wraps,
unlike a wxListBox. 		

wxLC_REPORT Single or multicolumn report view, with optional header. 		

wxLC_VIRTUAL Don't use this, it wont work! (The application provides items text on demand.
May only be used with wxLC_REPORT.) 		

wxLC_ICON Large icon view, with optional labels. 		

509
GUI programming / ListControls / ListControl

wxLC_SMALL_ICON Small icon view, with optional labels. 		

wxLC_ALIGN_TOP Icons align to the top. Win32 default, Win32 only. 		

wxLC_ALIGN_LEFT Icons align to the left. 		

wxLC_AUTOARRANGE Icons arrange themselves. Win32 only. 		

wxLC_EDIT_LABELS Labels are editable: the application will be notified when editing starts. 		

wxLC_NO_HEADER No header in report mode. 		

wxLC_SINGLE_SEL Single selection (default is multiple). 		

wxLC_SORT_ASCENDING Don't use this, it wont work! (Sort in ascending order (must still
supply a comparison callback in SortItems.)) 		

wxLC_SORT_DESCENDING Don't use this, it wont work! (Sort in descending order (must still
supply a comparison callback in SortItems.)) 		

wxLC_HRULES Draws light horizontal rules between rows in report mode. 		

wxLC_VRULES Draws light vertical rules between columns in report mode. 		

 pos is the position of the ChoiceBox (a list of two integer numbers, x and y), 		

 size is the size of the ChoiceBox (a list of two integer numbers, width and height). 		

Example: 		

510
GUI programming / ListControls / ListControl

lc=(ListControl [][MyListControl]
 [row=ListControlRow
 (pr word [row=] row
 word [column=] ListControlColumn
 ListControlText
 [Selected])
 id=Int (ListControlGetItem lc row 0)
]
 [(pr word [row=] ListControlRow
 word [column=] ListControlColumn
 ListControlText
 [Activated])
]
 [c=ListControlColumn
 (pr word [column=] c
 [Columnclick])
 ListControlSort lc c
] wxLC_REPORT [10 20][400 300])

foreach [[[ID] 40][[First Name] 80][[Name] 120][[Logo] 120]] [
 (ListControlInsertColumn lc # (?).1 (?).2)
]

data=[
 [1 Brian Harvey UCBLogo]
 [2 George Mills MSWLogo]
 [3 Pavel Boytchev Elica]
 [4 Lionel Laske Liogo]
 [5 Andreas Micheler aUCBLogo]
]
ListControlSet lc data

ListControlDestroy alistcontrol

Command that destroys the ListControl alistcontrol . 		

Example: 		

511
GUI programming / ListControls / ListControlDestroy

lc=(ListControl [][MyListControl][][][]
 wxLC_LIST [0 0][300 200])
ListControlInsertColumn lc 1 "Logo
data=[[UCBLogo][MSWLogo][Elica][Liogo][aUCBLogo]]
ListControlSet lc data
ListControlDestroy lc

ListControlInsertColumn alistcontrol col labl
(ListControlInsertColumn alistcontrol col labl awidth format)

Command to insert a new column into the ListControl alistcontrol at the column col with the
column label labl and column width awidth . 		

 col must be a positive integer number. 		

 labl is the column label text. 		

 awidth is the column width. 		

 format can be wxLIST_FORMAT_LEFT, wxLIST_FORMAT_RIGHT or
wxLIST_FORMAT_CENTRE. 		

Examples: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
(ListControlInsertColumn lc 1 [ID] 30)
(ListControlInsertColumn lc 2 [First Name]
 100 wxLIST_FORMAT_RIGHT)
ListControlInsertColumn lc 3 [Name]

ListControlInsertItem alistcontrol arow

Command inserting a new item (a row in wxLC_REPORT mode) into the ListControl alistcontrol

512
GUI programming / ListControls / ListControlInsertItem

at row arow . 		

 arow is the row of the new item, a zero-based integer number. 		

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_LIST [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertItem lc 0
ListControlSetItem lc 0 0 [UCBLogo]

ListControlSetItem alistcontrol arow col aitem

Command to set the item aitem at position (column col , row arow) of the ListControl
alistcontrol . 		

 arow is the row (Y in wxLC_REPORT mode) of the item that's set. It's a zero-based integer. 		

 col is the column (X in wxLC_REPORT mode) of the item. It's a zero-based integer. 		

 aitem is the item text that's set. 		

Examples: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlInsertItem lc 0
ListControlInsertItem lc 1
ListControlSetItem lc 0 0 [UCBLogo]
ListControlSetItem lc 0 1 [Brian Harvey]
ListControlSetItem lc 1 0 [MSWLogo]
ListControlSetItem lc 1 1 [George Mills]

513
GUI programming / ListControls / ListControlGetItem

ListControlGetItem alistcontrol arow col

outputs the item's text of the item at position (column col , row arow) of the ListControl
alistcontrol . 		

 arow is the row (Y in wxLC_REPORT mode) of the item that's fetched. It's a zero-based integer. 		

 col is the column (X in wxLC_REPORT mode) of the item. It's a zero-based integer. 		

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
show ListControlGetItem lc 0 1

ListControlDeleteItem alistcontrol arow

Command to delete the row arow of the ListControl alistcontrol . 		

 arow is the row (Y in wxLC_REPORT mode) that's deleted. It's a zero-based integer. 		

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
ListControlDeleteItem lc 0

514
GUI programming / ListControls / ListControlSetRow

ListControlSetRow alistcontrol arow data

Command to set the row at arow of the ListControl alistcontrol to the list of items in data . 		

 arow is the row (Y in wxLC_REPORT mode) that's set. It's a zero-based integer. 		

 data is a list of items corresponding to the columns. 		

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
ListControlSetRow lc 0 [Liogo [Lionel Laske]]

ListControlSetColumn alistcontrol col data

Command to set the column at col of the ListControl alistcontrol to the list of items in data . 		

 col is the column (X in wxLC_REPORT mode) that's set. It's a zero-based integer. 		

 data is a list of items corresponding to the rows. 		

Example: 		

515
GUI programming / ListControls / ListControlSetColumn

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
ListControlSetColumn lc 1 [Brian George]

ListControlSet alistcontrol data

Command to set the items of the ListControl alistcontrol to the list of rows (which are lists of
column items) in data . 		

 data is a list of rows. A element of rows is a list of items corresponding to the columns. 		

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]

ListControlGetRow alistcontrol arow

outputs the row at arow of the ListControl alistcontrol . 		

 arow is the row (Y in wxLC_REPORT mode) that's fetched. It's a zero-based integer. 		

Output is a list of items (words) corresponding to the columns. 		

516
GUI programming / ListControls / ListControlGetRow

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
show ListControlGetRow lc 0
show first bf ListControlGetRow lc 0 ;It's a word

ListControlGetColumn alistcontrol col data

outputs the column at col of the ListControl alistcontrol . 		

 col is the column (X in wxLC_REPORT mode) that's fetched. It's a zero-based integer. 		

Output is a list of items (words) corresponding to the rows. 		

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
show ListControlGetColumn lc 1

ListControlGet alistcontrol

outputs the items of the ListControl alistcontrol . 		

517
GUI programming / ListControls / ListControlGet

Output is a list of rows. A element of rows is a list of items (words) corresponding to the columns. 		

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
show ListControlGet lc

ListControlItemCount alistcontrol

outputs the item count (the number of rows in wxLC_REPORT mode) of the ListControl
alistcontrol . 		

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
show ListControlItemCount lc

ListControlColumnCount alistcontrol

outputs the column count (the number of columns in wxLC_REPORT mode) of the ListControl
alistcontrol . 		

518
GUI programming / ListControls / ListControlColumnCount

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
show ListControlColumnCount lc

ListControlColumn

outputs the column where the latest event of a ListControl was processed. 		

Examples: 		

519
GUI programming / ListControls / ListControlColumn

lc=(ListControl [][MyListControl]
 [row=ListControlRow
 (pr word [row=] row
 word [column=] ListControlColumn
 ListControlText
 [Selected])
]
 [(pr word [row=] ListControlRow
 word [column=] ListControlColumn
 ListControlText
 [Activated])
]
 [c=ListControlColumn
 (pr word [column=] c
 [Columnclick])
 ListControlSort lc c
] wxLC_REPORT [10 20][400 300])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]

ListControlRow

outputs the row where the latest event of a ListControl was processed. 		

Examples: 		

520
GUI programming / ListControls / ListControlRow

lc=(ListControl [][MyListControl]
 [row=ListControlRow
 (pr word [row=] row
 word [column=] ListControlColumn
 ListControlText
 [Selected])
]
 [(pr word [row=] ListControlRow
 word [column=] ListControlColumn
 ListControlText
 [Activated])
]
 [c=ListControlColumn
 (pr word [column=] c
 [Columnclick])
 ListControlSort lc c
] wxLC_REPORT [10 20][400 300])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]

ListControlText

outputs the item text of the first column in the row where the latest event of a ListControl was
processed. 		

Examples: 		

521
GUI programming / ListControls / ListControlText

lc=(ListControl [][MyListControl]
 [row=ListControlRow
 (pr word [row=] row
 word [column=] ListControlColumn
 ListControlText
 [Selected])
]
 [(pr word [row=] ListControlRow
 word [column=] ListControlColumn
 ListControlText
 [Activated])
]
 [c=ListControlColumn
 (pr word [column=] c
 [Columnclick])
 ListControlSort lc c
] wxLC_REPORT [10 20][400 300])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]

ListControlSort alistcontrol col

Command to sort the ListControl alistcontrol by column number col . 		

Example: 		

522
GUI programming / ListControls / ListControlSort

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [col0]
ListControlInsertColumn lc 1 [col1]
ListControlInsertColumn lc 2 [col2]
ListControlSet lc [
 [1 3 A]
 [2 1 B]
 [3 10 C]]
ListControlSort lc 1
ListControlSort lc 2

ListControlSetBackgroundColor alistcontrol color

Command to set the background color of the ListControl alistcontrol to the color color . 		

 color must be a valid color , see also setPenColor! 		

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
ListControlSetBackgroundColor lc "red

ListControlSetColor alistcontrol color

Command to set the foreground color of the ListControl alistcontrol to the color color . 		

 color must be a valid color , see also setPenColor! 		

523
GUI programming / ListControls / ListControlSetColor

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
ListControlSetColor lc "red

ListControlSetFontSize alistcontrol size

Command to set the font size of the ListControl alistcontrol to size , which must be a integer
number. 		

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
ListControlSetFontSize lc 50

ListControlSetFontName alistcontrol name

Command to set the font name of the ListControl alistcontrol to name , which must be a valid
font name . 		

Example: 		

524
GUI programming / ListControls / ListControlSetFontName

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
ListControlSetFontName lc [Courier]

ListControlSetFontStyle alistcontrol style

Command to set the font style of the ListControl alistcontrol . 		

 style can be one of the constants wxFONTSTYLE_NORMAL wxFONTSTYLE_SLANT
wxFONTSTYLE_ITALIC. 		

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
ListControlSetFontStyle lc wxFONTSTYLE_ITALIC

ListControlSetFontWeight alistbox weight

Command to set the font weight of the ListControl alistcontrol. 		

 weight can be one of the constants wxFONTWEIGHT_NORMAL wxFONTWEIGHT_LIGHT
wxFONTWEIGHT_BOLD 		

525
GUI programming / ListControls / ListControlSetFontWeight

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
ListControlSetFontWeight lc wxFONTWEIGHT_BOLD

ListControlOnChar alistcontrol commands

Command to set the custom event handler for the char event of the ListControl alistcontrol to
commands . See also OnChar! 		

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
ListControlOnChar lc [pr KeyboardValue]

ListControlOnKeyDown alistcontrol commands

Command to set the custom event handler for the key down event of the ListControl alistcontrol to
 commands . See also OnKeyDown! 		

Example: 		

526
GUI programming / ListControls / ListControlOnKeyDown

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
ListControlOnKeyDown lc [pr KeyboardValue]

ListControlOnKeyUp alistcontrol commands

Command to set the custom event handler for the key up (=release) event of the ListControl
alistcontrol to commands . See also OnKeyUp! 		

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]]
ListControlOnKeyUp lc [pr KeyboardValue]

ListControlOnItemSelected alistcontrol commands

Command to set the custom event handler for the LIST_ITEM_SELECTED event of the
ListControl alistcontrol to commands . 		

Example: 		

527
GUI programming / ListControls / ListControlOnItemSelected

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]
]
ListControlOnItemSelected lc [
 (pr word [row=] ListControlRow
 word [column=] ListControlColumn
 ListControlText
 [Selected])
]

ListControlOnItemActivated alistcontrol commands

Command to set the custom event handler for the LIST_ITEM_ACTIVATED event (ENTER or
double-click) of the ListControl alistcontrol to commands . 		

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]
]
ListControlOnItemActivated lc [
 (pr word [row=] ListControlRow
 word [column=] ListControlColumn
 ListControlText
 [Activated])
]

528
GUI programming / ListControls / ListControlOnColClick

ListControlOnColClick alistcontrol commands

Command to set the custom event handler for the LIST_COL_CLICK event (click on a column
label) of the ListControl alistcontrol to commands . 		

Example: 		

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]
]
ListControlOnColClick lc [
 c=ListControlColumn
 (pr word [column=] c
 [Columnclick])
 ListControlSort lc c
]

ListControlEnable alistcontrol state

Command. If state is true then it enables the ListControl alistcontrol , if state is false then it
disables the ListControl. 		

 state must be a boolean. 		

Example: 		

529
GUI programming / ListControls / ListControlEnable

lc=(ListControl [][MyListControl][][][]
 wxLC_REPORT [0 0][300 200])
ListControlInsertColumn lc 0 [Logo]
ListControlInsertColumn lc 1 [Main Author]
ListControlSet lc [
 [UCBLogo [Brian Harvey]]
 [MSWLogo [George Mills]]
]
ListControlEnable lc false
;Click on the FloatControl again --nothing happens
ListControlEnable lc true ;enabled again

530
GUI programming / RadioButtons

RadioButtons

...are little windows containing a radio button and a text label, which can run a Logo instructionlist
when the user clicks with the mouse on them and checks them. CheckBoxes are demonstrated in
buttontest.lg. 		

RadioButtons

• RadioButton 530
• RadioButtonDestroy 531
• RadioButtonOnClick 531
• RadioButtonValue 532
• RadioButtonSet 532
• RadioButtonEnable 532

RadioButton parent label onclick
(RadioButton parent label onclick style pos size)

outputs a new RadioButton on the parent (a Frame or a Graph), 		

having the text label on it, 		

and running the onclick instructionlist when the user clicks with the mouse on it. 		

 style can be a combination (use +) of the following constants: 		

wxRB_GROUP Marks the beginning of a new group of radio buttons. 		

wxRB_SINGLE In some circumstances, radio buttons that are not consecutive siblings trigger a
hang bug in Windows (only). If this happens, add this style to mark the button as not belonging to
a group, and implement the mutually-exclusive group behaviour yourself. 		

wxRB_USE_CHECKBOX Use a checkbox button instead of radio button (currently supported
only on PalmOS). 		

531
GUI programming / RadioButtons / RadioButton

 pos is the position of the Button (a list of two integer numbers, x and y), 		

 size is the size of the Button (again a list of two integer numbers, width and height). 		

Examples: 		

rb1=(RadioButton [][PenPaint]
[if RadioButtonValue rb1 [PenPaint setPC 0]
] wxRB_GROUP)
rb2=(RadioButton [][PenErase]
[if RadioButtonValue rb2 [PenErase]
] 0 [0 30])
rb3=(RadioButton [][PenReverse]
[if RadioButtonValue rb3 [PenReverse]
] 0 [0 60])

RadioButtonDestroy aradiobutton

Command that destroys the RadioButton aradiobutton . 		

Example: 		

rb=(RadioButton [][PenPaint]
[if RadioButtonValue rb [PenPaint setPC 0]
] wxRB_GROUP)
RadioButtonDestroy rb

RadioButtonOnClick aradiobutton instructionlist

Command that sets the onClick event handler of the RadioButton aradiobutton to the commands
in the instructionlist . 		

Examples: 		

532
GUI programming / RadioButtons / RadioButtonOnClick

rb=(RadioButton [][PenPaint][] wxRB_GROUP)
RadioButtonOnClick rb [
 if RadioButtonValue rb [PenPaint setPC 0]
]
RadioButtonOnClick cb [] ;like disabling the RadioButton

RadioButtonValue aradiobutton

outputs true if the RadioButton aradiobutton is checked, false otherwise. 		

Example: 		

rb=(RadioButton [][PenPaint]
[if RadioButtonValue rb [pr [checked]]
] wxRB_GROUP)

RadioButtonSet acheckbox state

Command that sets the RadioButton aradiobutton to checked if state is true, to unchecked if false.
		

 state must be a boolean. 		

Example: 		

rb=(RadioButton [][PenPaint]
[if RadioButtonValue rb [pr [checked]]
] wxRB_GROUP)
RadioButtonSet rb true
RadioButtonSet rb false

RadioButtonEnable aradiobutton state

533
GUI programming / RadioButtons / RadioButtonEnable

Command. If state is true then it enables the RadioButton aradiobutton , if state is false then it
disables the RadioButton. 		

 state must be a boolean. 		

Example: 		

rb=(RadioButton [][PenPaint]
[if RadioButtonValue rb [pr [checked]]
] wxRB_GROUP)
RadioButtonEnable rb false
;Click on the RadioButton again --nothing happens
RadioButtonEnable rb true ;enabled again

534
GUI programming / Sliders

Sliders

A Slider is a little window containing a text label, and a slider control for use with integer numbers.
It holds the value of an integer number, which can be changed by the user with the arrow keys, or
by draging of or clicking on the slider with the mouse. 		

Slider is demonstrated in slidertest.lg. 		

Sliders

• Slider 534
• SliderDestroy 535
• SliderValue 536
• SliderSetValue 536
• SliderSetRange 536
• SliderOnScroll 537
• SliderEnable 537

Slider parent name min value max onScroll
(Slider parent name min value max)
(Slider parent name min value max onScroll style pos size)

outputs a new Slider on the parent (a Frame or a Graph, main Graph if []). 		

 name is the label text and the name of the control. 		

 min is the minimal allowed value that the control accepts. 		

 value is the number shown at startup of the control. 		

 max is the maximal allowed value that the control accepts. 		

 min , value and max must be integer numbers. 		

onChange is a command list that will be run if the OnChange event of the control is processed.
That's whenever the number in the control changes anyhow. 		

535
GUI programming / Sliders / Slider

 style is the window style and can be a combination of the following constants: 		

wxSL_HORIZONTAL Displays the slider horizontally (this is the default). 		

wxSL_VERTICAL Displays the slider vertically. 		

wxSL_AUTOTICKS Displays tick marks. 		

wxSL_LABELS Displays minimum, maximum and value labels. 		

wxSL_LEFT Displays ticks on the left and forces the slider to be vertical. 		

wxSL_RIGHT Displays ticks on the right and forces the slider to be vertical. 		

wxSL_TOP Displays ticks on the top. 		

wxSL_BOTTOM Displays ticks on the bottom (this is the default). 		

wxSL_SELRANGE Allows the user to select a range on the slider. Windows only. 		

wxSL_INVERSE Inverses the mininum and maximum endpoints on the slider. Not compatible
with wxSL_SELRANGE. 		

 pos is the position of the Slider (a list of two integer numbers, x and y), 		

 size is the size of the Slider (a list of two integer numbers, width and height). 		

Example: 		

s=(Slider [][X] -400 0 400
 [x=SliderValue
 (pr "x= x)
 setXY x y
 updateGraph
]
 wxSL_horizontal+wxSL_Labels+wxSL_Ticks
 [10 220][200 80])

536
GUI programming / Sliders / SliderDestroy

SliderDestroy aslider

Command to destroy the Slider aslider . 		

Example: 		

s=(Slider [][X] -400 0 400 [x=SliderValue (pr "x= x)]
 wxSL_horizontal+wxSL_Labels+wxSL_Ticks
 [10 220][200 80])
SliderDestroy s

SliderValue
(SliderValue aslider)

outputs the integer value of the Slider aslider or if called without arguments, of the Slider whose
event is being processed lately. 		

Example: 		

s=(Slider [][X] -400 0 400 [x=SliderValue (pr "x= x)]
 wxSL_horizontal+wxSL_Labels+wxSL_Ticks
 [10 220][200 80])

SliderSetValue aslider value

Command to set the value of the Slider aslider to the integer number value . 		

Example: 		

s=(Slider [][X] -400 0 400 [x=SliderValue (pr "x= x)]
 wxSL_horizontal+wxSL_Labels+wxSL_Ticks
 [10 220][200 80])
SliderSetValue s 123

537
GUI programming / Sliders / SliderSetRange

SliderSetRange aslider min max

Command to set the range of valid numbers of the Slider aslider to stay between the numbers min
and max inclusive. 		

Example: 		

s=(Slider [][X] -400 0 400 [x=SliderValue (pr "x= x)]
 wxSL_horizontal+wxSL_Labels+wxSL_Ticks
 [10 220][200 80])
SliderSetRange s -10 20

SliderOnScroll aslider commands

Command to set the OnScroll event handler of the Slider aslider to the commandlist commands .
		

Example: 		

s=(Slider [][X] -400 0 400 []
 wxSL_horizontal+wxSL_Labels+wxSL_Ticks
 [10 220][200 80])
SliderOnScroll s [x=SliderValue (pr "x= x)]

SliderEnable aslider state

Command. If state is true then it enables the Slider aslider , if state is false then it disables the
Slider. 		

 state must be a boolean. 		

Example: 		

538
GUI programming / Sliders / SliderEnable

s=(Slider [][X] -400 0 400 [x=SliderValue (pr "x= x)]
 wxSL_horizontal+wxSL_Labels+wxSL_Ticks
 [10 220][200 80])
SliderEnable s false
;Click on the Slider again --nothing happens
SliderEnable s true ;enabled again

539
GUI programming / StaticTexts

StaticTexts

...are windows containing one or more lines of read-only text. 		

The corresponding demo is statictexttest.lg. 		

StaticTexts

• StaticText 539
• StaticTextDestroy 540
• StaticTextLabel 540
• StaticTextSetLabel 540
• StaticTextSetColor 541
• StaticTextSetBackgroundColor 541
• StaticTextSetFontSize 541
• StaticTextSetFontName 542
• StaticTextSetFontStyle 542
• StaticTextSetFontWeight 543

StaticText parent label
(StaticText parent label style pos size name)

outputs a new StaticText control on the parent (a Frame or a Graph, or if [] the main Graph). 		

 label can be anything that can be converted to a word. That word is shown in the StaticText
control. 		

 style is the window style and can be a combination of the following constants: 		

wxALIGN_LEFT Align the text to the left 		

wxALIGN_RIGHT Align the text to the right 		

wxALIGN_CENTRE Center the text (horizontally) 		

wxST_NO_AUTORESIZE By default, the control will adjust its size to exactly fit to the size of
the text when SetLabel is called. If this style flag is given, the control will not change its size (this

540
GUI programming / StaticTexts / StaticText

 style is especially useful with controls which also have wxALIGN_RIGHT or CENTER style
because otherwise they won't make sense any longer after a call to SetLabel) 		

 pos is the position of the StaticText (a list of two integer numbers, x and y), 		

 size is the size of the StaticText (a list of two integer numbers, width and height). 		

Example: 		

s=(StaticText [][This is\
 a multiline\
 static\
 Text] wxAlign_centre [100 200][100 100][Text1])

StaticTextDestroy astatictext

Command that destroys the StaticText astatictext . 		

Example: 		

s=(StaticText [][This is a static Text]
 wxAlign_centre [100 200][100 100][Text1])
StaticTextDestroy s

StaticTextLabel astatictext

outputs the text contents of the StaticText control. 		

Example: 		

s=(StaticText [][This is a static Text]
 wxAlign_centre [100 200][100 100][Text1])
show StaticTextLabel s

541
GUI programming / StaticTexts / StaticTextSetLabel

StaticTextSetLabel astatictext label

Command to set the text contained in the StaticText control astatictext . 		

 label is anything printable. It will be converted to a word. 		

Example: 		

s=(StaticText [] "
 wxAlign_centre [100 200][100 100][Text1])
StaticTextSetLabel s [This is a static Text]

StaticTextSetColor astatictext color

Command to set the foreground color of the StaticText astatictext to color , which must be a
valid color (see SetPenColor!). 		

Example: 		

s=(StaticText [][This is a static Text]
 wxAlign_centre [100 200][100 100][Text1])
StaticTextSetColor s "red

StaticTextSetBackgroundColor astatictext color

Command to set the background color of the StaticText astatictext to color , which must be a
valid color (see SetPenColor!). 		

Example: 		

s=(StaticText [][This is a static Text]
 wxAlign_centre [100 200][100 100][Text1])
StaticTextSetBackgroundColor s rgb 1 0 0

542
GUI programming / StaticTexts / StaticTextSetFontSize

StaticTextSetFontSize astatictext size

Command to set the font size of the StaticText astatictext to size , which must be a integer
number. 		

Example: 		

s=(StaticText [][This is a static Text]
 wxAlign_centre [100 200][100 100][Text1])
StaticTextSetFontSize s 50

StaticTextSetFontName astatictext size

Command to set the font name of the StaticText astatictext to name, which must be a valid font
name. 		

Example: 		

s=(StaticText [][This is a static Text]
 wxAlign_centre [100 200][100 100][Text1])
StaticTextSetFontName s [Courier]

StaticTextSetFontStyle astatictext style

Command to set the font style of the StaticText astatictext . 		

 style can be one of the constants wxFONTSTYLE_NORMAL wxFONTSTYLE_SLANT
wxFONTSTYLE_ITALIC. 		

Example: 		

543
GUI programming / StaticTexts / StaticTextSetFontStyle

s=(StaticText [][This is a static Text]
 wxAlign_centre [100 200][100 100][Text1])
StaticTextSetFontStyle s wxFONTSTYLE_ITALIC

StaticTextSetFontWeight astatictext weight

Command to set the font weight of the StaticText astatictext . 		

 weight can be one of the constants wxFONTWEIGHT_NORMAL wxFONTWEIGHT_LIGHT
wxFONTWEIGHT_BOLD 		

Example: 		

s=(StaticText [][This is a static Text]
 wxAlign_centre [100 200][100 100][Text1])
StaticTextSetFontWeight f wxFONTWEIGHT_BOLD

544
GUI programming / TextControls

TextControls

...is a window with a text label and an edit control, which might be multiline, and maybe formatted.
		

A text control allows text to be displayed and edited. It may be single line or multi-line. 		

The corresponding demo is textcontroltest.lg. 		

TextControls

• TextControl 544
• TextControlDestroy 546
• TextControlValue 547
• TextControlSetValue 547
• TextControlWrite 547
• TextControlAppend 548
• TextControlSetInsertionPointEnd 548
• TextControlCursor 548
• TextControlSetCursor 549
• TextControlInsertMode 549
• TextControlOverwriteMode 550
• TextControlSetColor 550
• TextControlSetBackgroundColor 550
• TextControlSetFontSize 551
• TextControlSetFontName 551
• TextControlSetFontStyle 552
• TextControlSetFontWeight 552
• TextControlOnChar 552
• TextControlOnKeyDown 553
• TextControlOnKeyUp 553
• TextControlOnChange 554
• TextControlOnEnter 554
• TextControlEnable 554

TextControl parent name value
(TextControl parent name)
(TextControl parent name value onChange onEnter style pos size)

545
GUI programming / TextControls / TextControl

outputs a new TextControl on the parent (a Frame or a Graph, or if [] the main Graph). 		

 value can be anything that can be converted to a word. That word is shown in the TextControl at
the beginning. 		

 style is the window style and can be a combination of the following constants: 		

wxTE_PROCESS_ENTER The control will generate the event
wxEVT_COMMAND_TEXT_ENTER (otherwise pressing Enter key is either processed internally
by the control or used for navigation between dialog controls). 		

wxTE_PROCESS_TAB The control will receive wxEVT_CHAR events for TAB pressed -
normally, TAB is used for passing to the next control in a dialog instead. For the control created
with this style , you can still use Ctrl-Enter to pass to the next control from the keyboard. 		

wxTE_MULTILINE The text control allows multiple lines. 		

wxTE_PASSWORD The text will be echoed as asterisks. 		

wxTE_READONLY The text will not be user-editable. 		

wxTE_RICH Use rich text control under Win32, this allows to have more than 64KB of text in the
control even under Win9x. This style is ignored under other platforms. 		

wxTE_RICH2 Use rich text control version 2.0 or 3.0 under Win32, this style is ignored under
other platforms 		

wxTE_AUTO_URL Highlight the URLs and generate the wxTextUrlEvents when mouse events
occur over them. This style is only supported for wxTE_RICH Win32 and multi-line wxGTK2 text
controls. 		

wxTE_NOHIDESEL By default, the Windows text control doesn't show the selection when it
doesn't have focus - use this style to force it to always show it. It doesn't do anything under other
platforms. 		

wxHSCROLL A horizontal scrollbar will be created and used, so that text won't be wrapped. No
effect under wxGTK1. 		

wxTE_LEFT The text in the control will be left-justified (default). 		

wxTE_CENTRE The text in the control will be centered (currently wxMSW and wxGTK2 only). 		

546
GUI programming / TextControls / TextControl

wxTE_RIGHT The text in the control will be right-justified (currently wxMSW and wxGTK2
only). 		

wxTE_DONTWRAP Same as wxHSCROLL style : don't wrap at all, show horizontal scrollbar
instead. 		

wxTE_CHARWRAP Wrap the lines too long to be shown entirely at any position (wxUniv and
wxGTK2 only). 		

wxTE_WORDWRAP Wrap the lines too long to be shown entirely at word boundaries (wxUniv
and wxGTK2 only). 		

wxTE_BESTWRAP Wrap the lines at word boundaries or at any other character if there are words
longer than the window width (this is the default). 		

wxTE_CAPITALIZE On PocketPC and Smartphone, causes the first letter to be capitalized. 		

 pos is the position of the TextControl (a list of two integer numbers, x and y), 		

 size is the size of the TextControl (a list of two integer numbers, width and height). 		

Example: 		

t=(TextControl [][TextControl1][This is\
 some multiline\
 text]
 [][]
 wxTE_multiline+wxTE_Rich2+wxTE_NoHideSel
 [0 0][300 200])

TextControlDestroy atextcontrol

Command to destroy the TextControl atextcontrol . 		

Example: 		

547
GUI programming / TextControls / TextControlDestroy

t=(TextControl [][TextControl1][This is some text][][]
 wxTE_CENTRE [0 0][300 200])
TextControlDestroy t

TextControlValue
(TextControlValue atextcontrol)

outputs the word value of the TextControl atextcontrol or if called without arguments, of the
TextControl whose event is being processed lately. 		

Examples: 		

t=(TextControl [][TextControl1][This is some text]
 [(pr [onChange] TextControlValue)
][(pr [onEnter] TextControlValue)
]
 wxTE_MULTILINE+wxTE_RICH2 [0 0][300 200])

TextControlSetValue atextcontrol value

Command to set the text value of the TextControl atextcontrol to value . 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text][][]
 wxTE_CENTRE [0 0][300 200])
TextControlSetValue t [That's the new text!]

TextControlWrite atextcontrol value

548
GUI programming / TextControls / TextControlWrite

Command to write the text of value at the current cursor position into the TextControl
atextcontrol . 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_CENTRE [0 0][300 200])
TextControlSetCursor t [10 0]
TextControlWrite t [!That's the new text!]

TextControlAppend atextcontrol value

Command to append the text of value to the TextControl atextcontrol . 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_CENTRE [0 0][300 200])
TextControlAppend t [!That's the new text!]

TextControlSetInsertionPointEnd atextcontrol

Command to set the insertion point (the cursor) to the end of the text of the TextControl
atextcontrol . 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_CENTRE [0 0][300 200])
TextControlSetInsertionPointEnd t ;like with append
TextControlWrite t [!That's the new text!]

549
GUI programming / TextControls / TextControlCursor

TextControlCursor atextcontrol

outputs the cursor position of the TextControl atextcontrol as a list of two zero-based integers,
[column row]. 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_MULTILINE [0 0][300 200])
TextControlSetCursor t [10 2]
TextControlWrite t [!That's the new text!]
show TextControlCursor t

TextControlSetCursor atextcontrol pos

Command to set the insertion point, the cursor, of the TextControl atextcontrol to the pos list,
which consists of [column row]. 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_MULTILINE [0 0][300 200])
TextControlSetCursor t [10 2]
TextControlWrite t [!That's the new text!]

TextControlInsertMode atextcontrol

Command to set the write mode of the TextControl atextcontrol to insert. 		

Example: 		

550
GUI programming / TextControls / TextControlInsertMode

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_MULTILINE [0 0][300 200])
TextControlOverwriteMode t ;type something
TextControlInsertMode t ;type something more

TextControlOverwriteMode atextcontrol

Does not work yet! 		

Command to set the write mode of the TextControl atextcontrol to overwrite. 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_MULTILINE+wxTE_RICH2 [0 0][300 200])
TextControlOverwriteMode t ;type something
TextControlInsertMode t ;type something more

TextControlSetColor aTextControl color

Command to set the foreground color of the TextControl aTextControl to color , which must be
a valid color (see SetPenColor!). 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_MULTILINE [0 0][300 200])
TextControlSetColor t "red

551
GUI programming / TextControls / TextControlSetBackgroundColor

TextControlSetBackgroundColor aTextControl color

Command to set the background color of the TextControl aTextControl to color , which must be
a valid color (see SetPenColor!). 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_MULTILINE [0 0][300 200])
TextControlSetBackgroundColor t rgb 1 0 0

TextControlSetFontSize aTextControl size

Command to set the font size of the TextControl aTextControl to size , which must be a integer
number. 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_MULTILINE [0 0][300 200])
TextControlSetFontSize t 50

TextControlSetFontName aTextControl size

Command to set the font name of the TextControl aTextControl to name, which must be a valid
font name. 		

Example: 		

552
GUI programming / TextControls / TextControlSetFontName

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_MULTILINE [0 0][300 200])
TextControlSetFontName t [Courier]

TextControlSetFontStyle aTextControl style

Command to set the font style of the TextControl aTextControl . 		

 style can be one of the constants wxFONTSTYLE_NORMAL wxFONTSTYLE_SLANT
wxFONTSTYLE_ITALIC. 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_MULTILINE [0 0][300 200])
TextControlSetFontStyle t wxFONTSTYLE_ITALIC

TextControlSetFontWeight aTextControl weight

Command to set the font weight of the TextControl aTextControl . 		

 weight can be one of the constants wxFONTWEIGHT_NORMAL wxFONTWEIGHT_LIGHT
wxFONTWEIGHT_BOLD 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_MULTILINE [0 0][300 200])
TextControlSetFontWeight t wxFONTWEIGHT_BOLD

553
GUI programming / TextControls / TextControlOnChar

TextControlOnChar aTextControl commands

Command to set the custom event handler for the char event of the TextControl aTextControl to
commands . See also OnChar! 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_MULTILINE [0 0][300 200])
TextControlOnChar lc [pr KeyboardValue]

TextControlOnKeyDown aTextControl commands

Command to set the custom event handler for the key down event of the TextControl aTextControl
to commands . See also OnKeyDown! 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_MULTILINE [0 0][300 200])
TextControlOnKeyDown lc [pr KeyboardValue]

TextControlOnKeyUp aTextControl commands

Command to set the custom event handler for the key up (=release) event of the TextControl
aTextControl to commands . See also OnKeyUp! 		

Example: 		

554
GUI programming / TextControls / TextControlOnKeyUp

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_MULTILINE [0 0][300 200])
TextControlOnKeyUp lc [pr KeyboardValue]

TextControlOnChange aTextControl commands

Command to set the custom event handler for the text change event of the TextControl
aTextControl to commands . See also OnKeyUp! 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_MULTILINE [0 0][300 200])
TextControlOnChange lc [pr KeyboardValue]

TextControlOnEnter aTextControl commands

Command to set the custom event handler for the text enter event (when [Enter] was pressed) of the
TextControl aTextControl to commands . See also OnKeyUp! 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_MULTILINE [0 0][300 200])
TextControlOnEnter lc [pr KeyboardValue]

TextControlEnable atextcontrol state

555
GUI programming / TextControls / TextControlEnable

Command. If state is true then it enables the TextControl aTextControl, if state is false then it
disables the TextControl. 		

 state must be a boolean. 		

Example: 		

t=(TextControl [][TextControl1]
 [This is the initial text.][][]
 wxTE_MULTILINE [0 0][300 200])
TextControlEnable t false
;Click on the TextControl again --nothing happens
TextControlEnable t true ;enabled again

556
GUI programming / ToggleButtons

ToggleButtons

...are little windows containing a button with two states, which can run a Logo instructionlist when
the user clicks with the mouse on them and toggles them on and off. ToggleButtons are
demonstrated in buttontest.lg. 		

ToggleButtons

• ToggleButton 556
• ToggleButtonDestroy 557
• ToggleButtonOnClick 557
• ToggleButtonValue 557
• ToggleButtonSetValue 558
• ToggleButtonEnable 558

ToggleButton parent alabel onclick
(ToggleButton parent alabel onclick style apos size)

outputs a new ToggleButton on the parent (a Frame or a Graph), 		

having the text alabel on it, 		

and running the onclick instructionlist when the user clicks with the mouse on it. 		

 style is the window style , defaults to 0. 		

 apos is the position of the Button (a list of two integer numbers, x and y), 		

 size is the size of the Button (again a list of two integer numbers, width and height). 		

Examples: 		

557
GUI programming / ToggleButtons / ToggleButton

tbpd=ToggleButton [][Pen Down][
 ifelse ToggleButtonValue tbpd [PenDown][PenUp]
 updateGraph]
tbht=(ToggleButton [][Hide Turtle][
 ifelse ToggleButtonValue tbht [hideTurtle][showTurtle]
 updateGraph]
 wxBU_LEFT+wxBU_TOP [0 100][200 100])

ToggleButtonDestroy aToggleButton

Command that destroys the ToggleButton aToggleButton . 		

Example: 		

tbht=ToggleButton [][Hide Turtle][
 ifelse ToggleButtonValue tbht [hideTurtle][showTurtle]
 updateGraph]
ToggleButtonDestroy tbht

ToggleButtonOnClick aToggleButton instructionlist

Command that sets the onClick event handler of the ToggleButton aToggleButton to the
commands in the instructionlist . 		

Examples: 		

tb=ToggleButton [][Hide Turtle][
 ifelse ToggleButtonValue tb [hideTurtle][showTurtle]
 updateGraph]
ToggleButtonOnClick tb [
 ifelse ToggleButtonValue tb [pr [Yes, Sir!]][pr [No, Sir!]]
 updateGraph]
ToggleButtonOnClick tb [] ;like disabling the ToggleButton

558
GUI programming / ToggleButtons / ToggleButtonValue

ToggleButtonValue aToggleButton

outputs true if the ToggleButton aToggleButton is checked, false otherwise. 		

Example: 		

tb=ToggleButton [][Hide Turtle][
 ifelse ToggleButtonValue tb [hideTurtle][showTurtle]
 updateGraph]

ToggleButtonSetValue aToggleButton state

Command that sets the ToggleButton aToggleButton to checked if state is true, to unchecked if
false. 		

 state must be a boolean. 		

Example: 		

tb=ToggleButton [][Hide Turtle][
 ifelse ToggleButtonValue tb [hideTurtle][showTurtle]
 updateGraph]
ToggleButtonSetValue tb shown?

ToggleButtonEnable aToggleButton state

Command. If state is true then it enables the ToggleButton aToggleButton , if state is false then
it disables the ToggleButton. 		

 state must be a boolean. 		

Example: 		

559
GUI programming / ToggleButtons / ToggleButtonEnable

tb=ToggleButton [][Hide Turtle][
 ifelse ToggleButtonValue tb [hideTurtle][showTurtle]
 updateGraph]
ToggleButtonEnable tb false
;Click on the ToggleButton again --nothing happens
ToggleButtonEnable tb true ;enabled again

560
GUI programming / Miscellaneous GUI elements

Miscellaneous GUI elements

Miscellaneous GUI elements

• beginBusyCursor 560
• endBusyCursor 560
• ConsoleSetFocus 560

beginBusyCursor

Command to show a busy mouse cursor (hour glass). 		

endBusyCursor

Command to show the standard mouse cursor. 		

BusyCursor?		

outputs true if beginBusyCursor was called lately, and false if endBusyCursor was called lately. 		

ConsoleSetFocus

sets the keyboard focus to the console, which can be wanted if user input is needed. 		

561
Sound programming

Sound programming

Here are some commands to control the PC speaker, to play wave sound on the analog sound card
output, and for Midi music. 		

Sound programming

• PC speaker 562
• Wave Sound 566
• Midi 569
• Midi Table 577
• Midi Control Table 577
• Midi Glossary 578
• Midi Instruments 580

562
Sound programming / PC speaker

PC speaker

PC speaker

• Tone 562
• Tones 562
• TonesStop 563
• TonesFinished 563
• Sound 564
• Sounds 564
• SoundsStop 565
• SoundsFinished 565

Tone pitch duration

makes the PC speaker output a tone of pitch lasting duration seconds. The pitch is a number,
normally an integer, representing a musical note. 0 means A. Its frequency is computed by 440*2^(
pitch /12). 		

Examples: 		

tone 3 1000 ;outputs a C on the PC speaker
tone -12 1000 ;outputs a A (220Hz) on the PC speaker

Tones pitchDurationList
(Tones pitchs duration (s))

command that starts a new thread that plays the notes in either the pitchDurationList [pitch1
duration1 pitch2 duration2 ...] or from the two lists pitchs and durations. duration can also be one
number. 		

Examples: 		

563
Sound programming / PC speaker / Tones

Tones [0 1000 2 1000 4 1000]
(Tones [0 2 4 5 7 9 11 12] [400 350 300 250 200 150 100 50])
(Tones [0 2 4 5 7 9 11 12] 400)

TonesStop

stops one thread created by Tones. If you have called more than one Tones thread, you can call
TonesStop that many times. 		

TonesFinished

outputs an integer number representing the number of Tones threads that are finished. 		

Example: 		

564
Sound programming / PC speaker / TonesFinished

to testtones
 tones [0 1000 2 1000 4 1000 5 1000] waitMS 300
 tones [4 1000 5 1000 7 1000] waitMS 300
 tones [7 1000 9 1000]
 tf=TonesFinished
 otf=tf
 print tf
 tf=tf+3
 overwriteMode
 y=Cursor.2-1
 while [TonesFinished < tf]
 [if TonesFinished != otf
 [otf=TonesFinished
 setCursor list 0 y
 type otf
]
]
 insertMode
 pr []
end

Sound frequency duration

makes the PC speaker output a tone of frequency lasting duration seconds. The frequency must
be a positive number. If the duration is -1, the sound never stops. 		

Example: 		

Sound 440 1000		

Sounds frequencyDurationList
(Sound frequencies durations)

command that starts a new thread that plays the frequencies in either the frequencyDurationList
[frequency1 duration1 frequency2 duration2 ...] or from the two lists frequencies and durations .

565
Sound programming / PC speaker / Sounds

durations can also be one number. 		

Examples: 		

Sounds [440 400 880 300 1760 200]
(Sounds [440 880 1760] [400 300 200])
(Sounds [440 880 1760] 400)
(Sounds (se
 rSeq 20 10000 100
 rSeq 10000 20 100) 10)
(Sounds (sin rSeq 0 15*360 200)*4000+4000 10)
waitMS 2000
(Sounds (sin rSeq 0 3*360 200)*1000+1000 10)

SoundsStop

stops one thread created by Sounds. If you have called more than one Sounds thread, you can call
SoundsStop that many times to stop all threads. 		

SoundsFinished

outputs an integer number representing the number of Tones threads that are finished. See also
TonesFinished. 		

566
Sound programming / Wave Sound

Wave Sound

Wave Sound

• playWave 566
• playWaveFast 567

playWave wavefile flags
playWave wavedata flags

The wavefile must be a filename of a .WAV file. The wavedata can be an IntArray or an
Int16Array loaded with a correct wave file contents including the header. 		

The flags describe how the sound should be played. 		

However this command does not require a true sound card to enjoy. 		

There is a publicly available driver from Microsoft called SPEAKER(.EXE, .DRV, .ZIP ?) which
will emulate the wave file capabilities over the pc speaker. 		

 wavefile (String): The name of .WAV file. 		

 flags (Integer): A flag to indicate how you want the sound played. 		

0 = Synchronous does not return until completed.
1 = Asynchronous returns immediately while sound is still playing.
2 = Dont use the default sound if the specified one cannot be
found.
4 = In memory sound (automatically set if wavedata is given).
8 = Continue to loop the sound until another sound command is
issued.
16 = Dont stop an already playing sound.

Note: these flags can be combined by adding them together. 		

567
Sound programming / Wave Sound / playWave

Under Linux those flags have no meaning at the moment. 		

Hint: You can write portable sounds if you check the LogoVersion. 		

Example: 		

playwave "c:\\windows\\tada.wav 1+8
playwave [] 0

See also makewav3.lg. 		

playWaveFast wavedata

The wavedata can be an IntArray or an Int16Array loaded with a correct wave file contents
including the header. 		

Up to 32 waves can be simultanously playing, and the startup time is very short, so it's ideal for
games and music programs. 		

Example: 		

568
Sound programming / Wave Sound / playWaveFast

to loadwav f
 local [size wav]
 openReadBin f
 setReader f
 size=FileSize f
 wav=readInt16ArrayBin size/2
 setReader []
 close f
; (pr f "loaded)
 output wav
end
to resizeWav wav factor
 local "w
 w=Int16Array 44+round ((count wav)-44)*factor
 setItems 1 w Items 1 44 wav
 setItems 45 w resize
 (Items 45 count wav wav) (count w)-44
 output w
end
clickWav=loadwav "start.wav
cmajor=[0 2 4 5 7 9 11 12]
stoneWav=Array 8
repeat 8 [
 i=repcount
 stoneWav.i=resizeWav clickWav 2^((12-cmajor.i)/12)
]
repeat 100 [playWaveFast stonewav.(1+random 8) waitms 10]

569
Sound programming / Midi

Midi

Midi

• MidiCountDevices 569
• MidiDeviceInfo 569
• MidiOpen 570
• MidiClose 571
• MidiMessage 571
• MidiProgramChange 573
• MidiNoteOn 574
• MidiNoteOff 574
• MidiAllSoundsOff 575
• MidiOutStream 575
• MidiOutStreamsStart 576
• MidiOutStreamsStop 576
• MidiOutStreamsFinished 576

				devnr MidiCountDevices

outputs the number of available Midi devices devnr. 		

Example: 		

MidiCountDevices ;4 ;-)		

				devInfo MidiDeviceInfo devnr

outputs hardware-specific device information on the Midi device number devnr . 		

The first item of the output is either "input" or "output", which means that device is either a input or
output device. 		

Example: 		

570
Sound programming / Midi / MidiDeviceInfo

repeat MidiCountDevices [print MidiDeviceInfo repcount-1]
;output Microsoft MIDI-Mapper MMSystem
;input MPU-401 MMSystem
;output Microsoft GS Wavetable SW Synth MMSystem
;output MPU-401 MMSystem

MidiOpen outputDeviceNr

This command opens the Midi device number outputDeviceNr and accesses it through a Midi
device driver. 		

The device driver chosen depends on several things. 		

It lets you choose any available Midi driver available on your system. 		

The id starts at 0 up to 1 less than number of Midi drivers available. 		

To determine which id maps to which driver try several MidiOpen commands with increasing id. 		

MidiOpen will output the name of the driver being used. 		

device:(List) When successfully opened outputs the name of the driver being used. 		

id:(Integer) Is an index that specifies which Midi device driver you wish to open. When no id given
it selects the Midi Mapper device driver. 		

Basically Midi allows you to generate sound on your sound card. 		

You will need to install the appropriate drivers under Windows for your sound card to work. 		

Most sound cards come with a Midi player which basically reads Midi messages from the file and
passes them to the Midi driver. 		

571
Sound programming / Midi / MidiOpen

If you have your Midi player working under Windows then aUCBLogo should work too. 		

Midi commands in aUCBLogo do not yet support Midi files (.MID or .MDI). 		

Instead you directly build up sequences of Midi messages and send them directly to the Midi
device. 		

You can think of Midi commands in aUCBLogo as a programmable keyboard. 		

It just so happens that the link between your programmable keyboard (Midi commands) and your
Speaker is Midi. 		

Example: 		

MidiOpen 0
MidiNoteOn 0 60 127
MidiClose

MidiClose

This command closes the Midi device. There are no inputs or outputs. 		

See also the MIDIOPEN command. 		

Example: 		

MidiOpen 0
MidiNoteOn 0 60 127
MidiClose

MidiMessage message

The input must be a list. You must already of issued a MidiOpen command to use this command. 		

572
Sound programming / Midi / MidiMessage

 message :(List) A Midi message in one of 3 forms explained below. 		

There are 3 forms of the Midi message , the Short form, the Long form and the System Exclusive
form. 		

Short form message : 		

[status data1 data2] 		

The Short form is the common form and always has a 3 integer list. 		

The first integer is known as the Status BYTE (it can also be thought of as a COMMAND BYTE).
		

It must be followed by 2 data bytes even if the message requires only 1 (just use 0). 		

status:(Integer) In Midi terminology this is the "status byte" but I call it the "command code" in the
table below. 		

data1:(Integer) Data byte 1 of the Midi "command code". 		

data2:(Integer) Data byte 2 of the Midi "command code". 		

Long form message : 		

[status data1 data2 status data1 data2 ...] 		

The Long form is similar to the Short form but integer list contains many short messages (triples). 		

System Exclusive form message : 		

[240 data1 data2 data3 data4 ...] 		

573
Sound programming / Midi / MidiMessage

The SYSTEM EXCLUSIVE form must be led by the system exclusive status byte 240 (F0 hex). 		

It can then be followed by any amount of data bytes. 		

data1:(Integer) First data byte specific to your midi device. 		

data2:(Integer) First data byte specific to your midi device. 		

and so on. 		

See the MIDI TABLE which basically is a Specification of the Midi Message. 		

This documentation is not attempt to teach you Midi. But there is enough information here to
hopefully get you started. 		

For more information you may be interested in purchasing a book on Midi such as:
 Midi BASICS by Akira Otsuka and Akihiko Nakajima.
Example: 		

MidiOpen 0
MidiMessage (List 192+13 56 0 192+13 56 0)
MidiMessage (List 144+13 58 100)
;Listen to tone.
MidiClose

MidiProgramChange channel program

command to change the program (the timbre) of the Midi channel channel to program . 		

 channel must be an integer in the range 0..15. 		

 program must be an integer in the range 0..127. 		

Example: 		

574
Sound programming / Midi / MidiProgramChange

MidiOpen 0
MidiProgramChange 0 127
MidiNoteOn 0 58 127
MidiClose

MidiNoteOn channel pitch velocity

command to turn the note with pitch of the channel on. The velocity is the speed with which a
key is pressed and directly maps to the volume of the sound. 		

 channel must be an integer in the range 0..15. 		

 pitch must be an number in the range 0..127. 		

 velocity must be an integer in the range 0..127. 		

Example: 		

MidiOpen 0
MidiNoteOn 0 58 127
MidiClose

MidiNoteOff channel pitch velocity

command to turn the note with pitch of the channel off. The velocity is the speed with which a
key is released. 		

 channel must be an integer in the range 0..15. 		

 pitch must be an number in the range 0..127. 		

 velocity must be an integer in the range 0..127. 		

Example: 		

575
Sound programming / Midi / MidiNoteOff

MidiOpen 0
MidiNoteOn 0 58 127
MidiNoteOff 0 58 127
MidiClose

MidiAllSoundsOff

command to turn off all running Midi sounds of the selected device. 		

Example: 		

MidiOpen 0
MidiProgramChange 0 16
MidiNoteOn 0 58 127
MidiNoteOn 0 58+5 127
MidiNoteOn 0 58+9 127
MidiAllSoundsOff
MidiClose

MidiOutStream channel tonelist
				(MidiOutStream channel pitchs durations velocities)

command to start a new thread which will play the Midi tones in tonelist or in the lists pitchs ,
durations and velocities . 		

The created threads must be activated using the command MidiOutStreamsStart. 		

 tonelist is a list of triples of numbers: [pitch1 duration1 velocity1 pitch2 duration2 velocity2 ...] 		

 channel must be an integer in the range 0..15. 		

pitch must be an number in the range 0..127. 		

velocity must be an integer in the range 0..127. 		

576
Sound programming / Midi / MidiOutStream

duration must be a number and is measured in milliseconds. 		

Example: 		

MidiOpen 0
MidiOutStream 0 [60 1000 127 62 1000 127 64 1000 127 65 1000
127]
MidiOutStream 1 [64 1000 127 65 1000 127 67 1000 127]
MidiOutStream 2 [67 1000 127 69 1000 127]
MidiOutStreamsStart
MidiClose

MidiOutStreamsStart

command to activate the waiting threads which were created with MidiOutStream. 		

Example: 		

MidiOpen 0
MidiOutStream 0 [60 1000 127 62 1000 127 64 1000 127 65 1000
127]
MidiOutStream 1 [64 1000 127 65 1000 127 67 1000 127]
MidiOutStream 2 [67 1000 127 69 1000 127]
MidiOutStreamsStart
MidiClose

MidiOutStreamsStop

command to stop the threads created by MidiOutStream and maybe activated by
MidiOutStreamsStart. 		

MidiOutStreamsFinished

577
Sound programming / Midi / MidiOutStreamsFinished

outputs the number of finished MidiOutStream threads. This is useful for determining the end of a
Midi sound. 		

Midi Table

Command Name Command Code Data Byte 1 Data Byte 2		

Note Off 128 + Channel 0-127 Pitch 0-127 Velocity
Note On 144 + Channel 0-127 Pitch 0-127 Velocity
Poly Pressure 160 + Channel 0-127 Pitch 0-127 Pressure
Control Change 176 + Channel 0-127 Midi Control 0-127 MSB
Program Change 192 + Channel 0-127 Program Not used
Channel Pressure 208 + Channel 0-127 Pressure Not used
Pitch Wheel 224 + Channel 0-127 LSB 0-127 MSB
System Exclusive 240 0-127 Id Code Any number of bytes
Undefined 241 Not used Not used
Song Position 242 0-127 LSB 0-127 MSB
Song Select 243 0-127 Song Not used
Undefined 244 Not used Not used
Undefined 245 Not used Not used
Tune Request 246 Not used Not used
End of Exclusive 247 Not used Not used
Timing Clock 248 Not used Not used
Undefined 249 Not used Not used
Start 250 Not used Not used
Continue 251 Not used Not used
Stop 252 Not used Not used
Undefined 253 Not used Not used
Active Sensing 254 Not used Not used
System Reset 255 Not used Not used

See also the MIDI GLOSSARY. 		

578
Sound programming / Midi Control Table

Midi Control Table

Command Name Command Code Data Byte 1 Data Byte 2		

Control Change 176 + Channel 0 Undefined 0-127 MSB
Control Change 176 + Channel 1 Modulation Wheel 0-127 MSB
Control Change 176 + Channel 2 Breath Controller 0-127 MSB
Control Change 176 + Channel 3 After Touch 0-127 MSB
Control Change 176 + Channel 4 Foot Controller 0-127 MSB
Control Change 176 + Channel 5 Portamento Time 0-127 MSB
Control Change 176 + Channel 6 Data Entry 0-127 MSB
Control Change 176 + Channel 7 Main Volume 0-127 MSB
Control Change 176 + Channel 8-31 Undefined 0-127 MSB
Control Change 176 + Channel 32-63 LSB of 0-31 0-127 LSB
Control Change 176 + Channel 64 Damper Pedal 0:Off 127:On
Control Change 176 + Channel 65 Portamento 0:Off 127:On
Control Change 176 + Channel 66 Sostenuto 0:Off 127:On
Control Change 176 + Channel 67 Soft Pedal 0:Off 127:On
Control Change 176 + Channel 68-92 Undefined 0:Off 127:On
Control Change 176 + Channel 93 Chorus 0:Off 127:On
Control Change 176 + Channel 94 Celeste 0:Off 127:On
Control Change 176 + Channel 95 Phaser 0:Off 127:On
Control Change 176 + Channel 96 Data Entry + 1 0:Off 127:On
Control Change 176 + Channel 97 Data Entry - 1 0:Off 127:On
Control Change 176 + Channel 98-121 Undefined 0:Off 127:On
Control Change 176 + Channel 122 Local Control 0-127
Control Change 176 + Channel 123 All Notes Off 0
Control Change 176 + Channel 124 Omni Mode off 0-15
Control Change 176 + Channel 125 Omni Mode on 0
Control Change 176 + Channel 126 Mono on/Poly off 0
Control Change 176 + Channel 127 Poly on/Mono off 0

See also the MIDI GLOSSARY. 		

Midi Glossary

579
Sound programming / Midi Glossary

Channel: A channel is a number from 0-15 which corresponds to channels 1-16. 		

Pitch: A pitch is a number from 0-127 and corresponds to a note on the instrument. 		

Velocity: A velocity is a number from 0-127 and corresponds to how fast the key (or string) is
pressed or released (most terminology is in reference to keyboards). 0 means is released. 		

Pressure: A pressure is a number from 0-127 and corresponds to the characteristics of how the key
is hit. 		

Program: A program is a number from 0-127 and corresponds to the instrument to use. See the
MIDI INSTRUMENTS table. 		

MSB:	Most Significant Bits. 		

LSB:	Least Significant Bits. 		

Id Code: Manufactures Id Code. Used to enter System Exclusive Mode which is specific to the
Manufacturer of the device. 		

Song:	 A song is a rhythm machine. 		

580
Sound programming / Midi Instruments

Midi Instruments

Midi Instruments

• Pianos 580
• Chromatic 580
• Organs 581
• Guitars 581
• Basses 581
• Strings 582
• Ensembles 582
• Brass 582
• Reed 583
• Pipes 583
• Synth-Lead 583
• Synth-Pad 584
• Synth-Effects 584
• Ethnic 584
• Percussive 585
• Soundeffects 585

Pianos

0 - Acoustic Grand Piano
1 - Bright Acoustic Piano
2 - Electric Grand Piano
3 - Honky-tonk Piano
4 - Rhodes Piano
5 - Chorused Piano
6 - Harpsichord
7 - Clavinet

581
Sound programming / Midi Instruments / Chromatic

Chromatic Percussion

8 - Celesta
9 - Glockenspiel
10 - Music box
11 - Vibraphone
12 - Marimba
13 - Xylophone
14 - Tubular Bells
15 - Dulcimer

Organs

16 - Hammond Organ
17 - Percussive Organ
18 - Rock Organ
19 - Church Organ
20 - Reed Organ
21 - Accordian
22 - Harmonica
23 - Tango Accordian

Guitars

24 - Acoustic Guitar (nylon)
25 - Acoustic Guitar (steel)
26 - Electric Guitar (jazz)
27 - Electric Guitar (clean)
28 - Electric Guitar (muted)
29 - Overdriven Guitar
30 - Distortion Guitar
31 - Guitar Harmonics

582
Sound programming / Midi Instruments / Basses

Basses

32 - Acoustic Bass
33 - Electric Bass (finger)
34 - Electric Bass (pick)
35 - Fretless Bass
36 - Slap Bass 1
37 - Slap Bass 2
38 - Synth Bass 1
39 - Synth Bass 2

Strings

40 - Violin
41 - Viola
42 - Cello
43 - Contrabass
44 - Tremolo Strings
45 - Pizzicato Strings
46 - Orchestral Harp
47 - Timpani

Ensembles

48 - String Ensemble 1
49 - String Ensemble 2
50 - Synth Strings 1
51 - Synth Strings 2
52 - Choir Aahs
53 - Voice Oohs
54 - Synth Voice
55 - Orchestra Hit

583
Sound programming / Midi Instruments / Brass

Brass

56 - Trumpet
57 - Trombone
58 - Tuba
59 - Muted Trumpet
60 - French Horn
61 - Brass Section
62 - Synth Brass 1
63 - Synth Brass 2

Reed

64 - Soprano Sax
65 - Alto Sax
66 - Tenor Sax
67 - Baritone Sax
68 - Oboe
69 - English Horn
70 - Bassoon
71 - Clarinet

Pipes

72 - Piccolo
73 - Flute
74 - Recorder
75 - Pan Flute
76 - Bottle Blow
77 - Shakuhachi
78 - Whistle
79 - Ocarina

584
Sound programming / Midi Instruments / Synth-Lead

Synth-Lead

80 - Lead 1 (square)
81 - Lead 2 (sawtooth)
82 - Lead 3 (caliope lead)
83 - Lead 4 (chiff lead)
84 - Lead 5 (charang)
85 - Lead 6 (voice)
86 - Lead 7 (fifths)
87 - Lead 8 (brass + lead)

Synth-Pad

88 - Pad 1 (new age)
89 - Pad 2 (warm)
90 - Pad 3 (polysynth)
91 - Pad 4 (choir)
92 - Pad 5 (bowed)
93 - Pad 6 (metallic)
94 - Pad 7 (halo)
95 - Pad 8 (sweep)

Synth-Effects

96 - FX 1 (rain)
97 - FX 2 (soundtrack)
98 - FX 3 (crystal)
99 - FX 4 (atmosphere)
100 - FX 5 (brightness)
101 - FX 6 (goblins)
102 - FX 7 (echoes)
103 - FX 8 (sci-fi)

585
Sound programming / Midi Instruments / Ethnic

Ethnic

104 - Sitar
105 - Banjo
106 - Shamisen
107 - Koto
108 - Kalimba
109 - Bagpipe
110 - Fiddle
111 - Shanai

Percussive

112 - Tinkle Bell
113 - Agogo
114 - Steel Drums
115 - Woodblock
116 - Taiko Drum
117 - Melodic Tom
118 - Synth Drum
119 - Reverse Cymbal

Soundeffects

120 - Guitar Fret Noise
121 - Breath Noise
122 - Seashore
123 - Bird Tweet
124 - Telephone Ring
125 - Helicopter
126 - Applause

586
Index

_defMacro 387

_eq 67

_Macro 387

_maybeOutput 369

_setBF 60

_setButFirst 60

_setFirst 60

_setItem 58

_setPos 205

_setPosXYZ 206

` 356

abs 143

Absolute Turtle Motion 200

addColors 292

addColorsMod 292

allFullScreen 228

allOpen 106

AlNumP 74

AlphaP 74

and 175

and2 176

apply 378

Arc 255

arc2 256

ArcCos 150

ArcSin 149

ArcTan 150

Arithmetic 133

Arithmetic Mutators 160

Arithmetic Predicates 162

Arity 325

Array 37

ArrayP 65

ASCII 83

ASCIIP 75

aShift 173

axes 232

back 196

backslashedP 73

BackslashEncode 86

Basses 581

beforeP 67

beginBusyCursor 560

Berkeley Logo User Manual 27

butFirst 51

butFirsts 51

BigFloat 140

BigFloatSetPrecision 140

BitAnd 172

BitCopy 281

BitItem 54

BitMakeTransparent 283

Bitmaps 281

BitMaxX 284

BitMaxY 284

BitNot 173

BitOr 172

BitPaste 281

BitPixel 284

BitSetPixel 283

BitMakeTransparent 283

Bitwise Operations 172

BitXOr 173

back 196

butLast 52

boldTextMode 122

BoxSizer 439

BoxSizerAdd 440

BoxSizerDestroy 442

BoxSizers 439

Brass 582

break 374

Buglist for version 4.65 21

buried 322

bury 335

buryall 335

buryname 336

butFirst 51

butFirsts 51

butLast 52

Button 443

ButtonDestroy 444

ButtonEnable 444

ButtonOnClick 444

Buttons 443

bye 354

Calls 231

cascade 384

cascade2 385

case 366

CaseIgnoredP 319

castShadows 303

catch 368

changeDir 112

changeDir 112

Char 84

CharP 70

CharUnderCursor 120

check 361

CheckBox 446

CheckBoxDestroy 447

CheckBoxEnable 448

CheckBoxes 446

CheckBoxOnClick 447

CheckBoxSet 448

CheckBoxValue 448

ChoiceBox 450

ChoiceBoxAppend 453

ChoiceBoxCount 454

ChoiceBoxDestroy 451

ChoiceBoxEnable 460

ChoiceBoxes 450

ChoiceBoxOnChar 458

ChoiceBoxOnKeyDown 458

ChoiceBoxOnKeyUp 459

ChoiceBoxOnSelect 459

ChoiceBoxRemoveItem 454

ChoiceBoxSelection 451

ChoiceBoxSetBackgroundColor 455

ChoiceBoxSetChoices 452

ChoiceBoxSetColor 455

ChoiceBoxSetFontName 456

ChoiceBoxSetFontSize 456

ChoiceBoxSetFontStyle 457

ChoiceBoxSetFontWeight 457

ChoiceBoxSetItem 453

ChoiceBoxSetSelection 452

Chromatic 580

circle 254

587
Index

circularP 74

clean 220

clearPortBit 125

clearScreen 220

clearShadows 303

clearText 119

close 105

closeall 106

cngon 256

CntrlP 75

continue 360

Color database 179

combine 44

ComboBox 461

ComboBoxAppend 466

ComboBoxCount 468

ComboBoxDestroy 463

ComboBoxEnable 482

ComboBoxes 461

ComboBoxOnChange 480

ComboBoxOnChar 476

ComboBoxOnEnter 481

ComboBoxOnKeyDown 477

ComboBoxOnKeyUp 478

ComboBoxOnSelect 479

ComboBoxRemoveItem 467

ComboBoxSelection 463

ComboBoxSetBackgroundColor 470

ComboBoxSetChoices 465

ComboBoxSetColor 471

ComboBoxSetFontName 473

ComboBoxSetFontSize 472

ComboBoxSetFontStyle 474

ComboBoxSetFontWeight 475

ComboBoxSetItem 466

ComboBoxSetSelection 464

ComboBoxSetValue 469

ComboBoxValue 468

ignore 356

Communication 88

complexP 73

cond 366

Conditional execution 364

conjugate 56

ConsoleSetFocus 560

Constructors 34

Contents 3

Contents 321

continue 360

continueLoop 375

Control Structures 354

copyDef 310

Cos 147

count 81

cross 157

crossmap 383

clearScreen 220

CSymP 76

clearText 119

Cursor 120

Custom Event Handlers 399

Data Structure Primitives 33

deepCopy 48

define 308

definedP 319

deleteTextures 300

dequeue 62

Difference 136

DigitP 76

dir 91

Direct Graphics 286

DirectoryP 111

dirlg 91

DirSelector 413

disableCylinderLines 248

disableDepthTest 248

disableDither 249

disableFog 250

disableLighting 249

disableLineSmooth 245

disablePointSmooth 249

disablePolySmooth 246

disableRoundLineEnds 247

disableShadows 302

disableTextMouseEvents 123

disableTexture 300

disableCylinderLines 248

disableDepthTest 248

disableLineSmooth 245

dispatchMessages 231

displaymatrix 91

disablePolySmooth 246

disableRoundLineEnds 247

Distance 216

DistanceXYZ 216

disableTexture 300

DynamicLibraryCall 130

do_until 374

do_while 374

doubleBuffer 229

downPitch 198

downPitch 198

drawGraphic 265

Drawing Curves 254

Drawing filled shapes 258

dribble 107

Dynamic Libraries 129

DynamicLibrary 129

DynamicLibraryCall 130

edall 348

edit 347

edall 348

edit 347

editFile 348

Editing 347

edn 349

edns 348

edpl 349

edpls 349

edps 348

Ellipse 255

EllipseArc 254

Ellipsoid 268

emptyP 66

enable and disable flags 245

enableCylinderLines 247

enableDepthTest 248

enableDither 249

enableFog 249

588
Index

enableLighting 248

enableLineSmooth 245

enablePointSmooth 249

enablePolySmooth 246

enableRoundLineEnds 246

enableShadows 302

enableTextMouseEvents 123

enableTexture 300

enableCylinderLines 247

endBusyCursor 560

endSurfaceStart 261

enableDepthTest 248

enableLineSmooth 245

enablePolySmooth 246

enableRoundLineEnds 246

Ensembles 582

Entering and leaving Logo 28

enableTexture 300

Environment 115

EofP 110

equalP 66

erase 350

eraseAll 350

erase 350

eraseAll 350

eraseFile 106

eraseNames 351

eraseProcedures 351

erasePropertyLists 351

Erasing 350

eraseFile 106

ern 351

eraseNames 351

erpl 352

erasePropertyLists 351

eraseProcedures 351

erract 394

error 369

Error Processing 391

Ethnic 584

exp 145

factorize 152

Faculty 151

FloodColor 252

forward 195

Fence 221

FileAccess 100

FileP 111

Files 113

FileSelector 414

FileSize 111

FileTime 111

fill 223

fillCircle 266

fillEllipse 267

fillPie 267

fillRect 266

filter 382

find 382

first 49

firsts 50

Float 139

float2ratio 167

FloatArray 40

FloatControl 484

FloatControlDestroy 485

FloatControlEnable 488

FloatControlOnChange 487

FloatControls 484

FloatControlSetRange 487

FloatControlSetValue 486

FloatControlValue 486

floatP 72

FloodColor 252

Fog 272

for 372

foreach 379

forever 372

Form 170

forward 195

fPut 36

Frame 422

FrameDestroy 424

FrameEnable 426

FrameFullScreen 427

FrameIconize 427

FrameMaximize 427

FrameOnChar 425

FrameOnKeyDown 425

FrameOnKeyUp 425

Frames 422

FrameSetBackgroundColor 429

FrameSetClientSize 428

FrameSetColor 428

FrameSetFocus 426

FrameSetFontName 429

FrameSetFontSize 429

FrameSetFontStyle 430

FrameSetFontWeight 430

FrameSetShape 430

FrameSetSizer 431

fullScreen 227

fullScreen 227

fullText 310

Gauge 489

GaugeDestroy 490

Gauges 489

GaugeSetBackgroundColor 491

GaugeSetColor 491

GaugeSetRange 491

GaugeSetValue 490

GaugeValue 490

GC 344

gcd 155

genSym 47

getColorDatabase 293

getColorFromUser 414

getFontFromUser 415

getMultipleChoices 415

getNumberFromUser 416

getPasswordFromUser 417

getPortBit 125

getProperty 316

getSingleChoice 418

getSingleChoiceIndex 419

getTextFromUser 417

getWorkingDirectory 112

goTo 355

getProperty 316

589
Index

Graph 432

GraphCurrent 433

GraphDestroy 433

GraphicEnd 264

Graphics 178

GraphicStart 264

GraphOnChar 434

GraphOnKeyDown 435

GraphOnKeyUp 435

GraphOnMouseLeftDClick 437

GraphOnMouseLeftDown 435

GraphOnMouseLeftUp 436

GraphOnMouseMiddleDClick 438

GraphOnMouseMiddleDown 436

GraphOnMouseMiddleUp 437

GraphOnMouseMotion 438

GraphOnMouseRightDClick 437

GraphOnMouseRightDown 436

GraphOnMouseRightUp 437

GraphP 77

Graphs 432

GraphSetCurrent 434

greaterEqualP 163

greaterP 162

GUI programming 396

Guitars 581

h 343

Heading 214

help 342

hex 171

hideTurtle 219

Home 200

HSB 290

HSBA 290

hideTurtle 219

IdentityMatrix 297

IdentityMatrix 297

if 364

ifElse 365

ifFalse 365

ifFalse 365

ifTrue 365

ifTrue 365

ignore 356

imag 56

insertMode 122

Inspection 328

Int 140

Int16 141

Int16Array 39

Int16P 71

Int8 141

Int8P 71

IntArray 38

IntControl 493

IntControlDestroy 494

IntControlEnable 495

IntControlOnChange 495

IntControls 493

IntControlSetRange 495

IntControlSetValue 494

IntControlValue 494

intForm 170

IntP 70

invertMatrix 157

invoke 379

iSeq 154

Item 52

items 54

KeyboardValue 401

KeyP 119

Label 223

LabelAlign 226

LabelFont 224

LabelSize 224

LabelWeight 225

last 50

lcm 155

left 196

leftPortShift 125

leftRoll 197

lessEqualP 163

lessP 162

Lighting 270

Line 288

List 35

ListBox 497

ListBoxAppend 500

ListBoxCount 501

ListBoxDestroy 499

ListBoxEnable 505

ListBoxes 497

ListBoxOnChar 504

ListBoxOnDClick 505

ListBoxOnKeyDown 504

ListBoxOnKeyUp 504

ListBoxOnSelect 505

ListBoxRemoveItem 501

ListBoxSelections 499

ListBoxSetBackgroundColor 502

ListBoxSetChoices 500

ListBoxSetColor 502

ListBoxSetFontName 503

ListBoxSetFontSize 502

ListBoxSetFontStyle 503

ListBoxSetFontWeight 503

ListBoxSetItem 501

ListBoxSetSelections 500

ListControl 508

ListControlColumn 518

ListControlColumnCount 517

ListControlDeleteItem 513

ListControlDestroy 510

ListControlEnable 528

ListControlGet 516

ListControlGetColumn 516

ListControlGetItem 512

ListControlGetRow 515

ListControlInsertColumn 511

ListControlInsertItem 511

ListControlItemCount 517

ListControlOnChar 525

ListControlOnColClick 527

ListControlOnItemActivated 527

ListControlOnItemSelected 526

ListControlOnKeyDown 525

ListControlOnKeyUp 526

ListControlRow 519

ListControls 507

590
Index

ListControlSet 515

ListControlSetBackgroundColor 522

ListControlSetColor 522

ListControlSetColumn 514

ListControlSetFontName 523

ListControlSetFontSize 523

ListControlSetFontStyle 524

ListControlSetFontWeight 524

ListControlSetItem 512

ListControlSetRow 513

ListControlSort 521

ListControlText 520

ListP 65

LN 146

load 341

loadImage 282

loadNoisily 394

loadpalette 113

loadPicture 275

loadPicture 275

loadPictureText 276

local 313

localmake 313

Log10 145

Logical Operations 175

LogoComspec 115

LogoEditor 116

LogoHelpDir 116

LogoLibDir 117

LogoTempDir 117

LogoVersion 98

Loops 371

lowerCase 84

LowerP 77

lowPassFilter 156

lPut 37

leftRoll 197

lShift 174

left 196

macroexpand 390

MacroP 390

Macros 387

make 312

makeDirectory 112

MandelIterate 158

map 380

map_se 381

Matrix 294

max 153

maxNorm 153

mdarray 40

mdItem 53

mdSetItem 58

Member 84

MemberP 68

merge 46

mergePairs 46

mergeSort 47

MessageBox 419

Midi 569

Midi Control Table 577

Midi Glossary 578

Midi Instruments 580

Midi Table 577

MidiAllSoundsOff 575

MidiClose 571

MidiCountDevices 569

MidiDeviceInfo 569

MidiMessage 571

MidiNoteOff 574

MidiNoteOn 574

MidiOpen 570

MidiOutStream 575

MidiOutStreamsFinished 576

MidiOutStreamsStart 576

MidiOutStreamsStop 576

MidiProgramChange 573

min 152

Minus 137

MIPS 128

Miscellaneous GUI elements 560

Modulo 139

Modulo 139

MouseButtons 235

MousePos 234

Multiple Turtles 237

Mutators 57

name 312

NameInTableP 69

namelist 324

NameP 319

Names 323

newTurtle 237

Nodes 326

noDribble 107

noRefresh 229

Norm 153

not 177

notFullScreen 228

notPortBit 125

NumberP 69

Numeric Operations 134

OnChar 400

OnKeyDown 400

OnKeyUp 400

OnMouseLeftDClick 411

OnMouseLeftDown 409

OnMouseLeftUp 410

OnMouseMiddleDClick 411

OnMouseMiddleDown 409

OnMouseMiddleUp 410

OnMouseMotion 411

OnMouseRightDClick 411

OnMouseRightDown 409

OnMouseRightUp 410

OnTextMouseLeftDClick 407

OnTextMouseLeftDown 405

OnTextMouseLeftUp 406

OnTextMouseMiddleDClick 408

OnTextMouseMiddleDown 405

OnTextMouseMiddleUp 407

OnTextMouseMotion 408

OnTextMouseRightDClick 407

OnTextMouseRightDown 405

OnTextMouseRightUp 406

output 356

openAppend 104

openAppendBin 104

openRead 100

591
Index

openReadBin 102

openUpdate 105

openUpdateBin 105

openWrite 103

openWriteBin 103

or 175

or2 176

Organs 581

Orientation 215

OSScreenSize 98

output 356

overwriteMode 122

Palette 252

parse 86

partialEllipsoid 268

pause 359

PenColor 251

PC speaker 562

PenDown 238

PenErase 239

pen 252

Pen and Background Control 238

Pen Queries 251

PenColor 251

PenDown 238

PenDownP 251

PenErase 239

PenMode 251

PenPaint 239

PenSize 252

PenReverse 239

PenSize 252

PenUp 238

Percussive 585

perspective 221

Pianos 580

pick 54

Pictures 275

Pipes 583

Pitch 214

Pixel 217

plainTextMode 122

playWave 566

playWaveFast 567

PropertyList 316

PropertyLists 324

pllist 325

printOut 328

poall 329

PolyEnd 259

PolyStart 258

pon 331

pons 330

pop 61

popl 331

popls 330

popMatrix 296

pops 329

Port Input and Output 124

PortIn 124

PortOut 124

Pos 213

PosXYZ 213

printOutTitles 332

pots 332

Power 145

putProperty 315

PenPaint 239

print 89

Predicates 64

primeP 164

PrimitiveP 318

Primitives 323

print 89

Print formatting 170

printDepthLimit 394

printOut 328

printOutTitles 332

PrintP 78

printWidthLimit 394

Procedure Definition 306

ProcedureP 318

Procedures 323

Product 137

profile 362

Projection Matrix 294

Property Lists 315

PropertyList 316

PropertyLists 324

PenUp 238

PunctP 78

push 61

pushMatrix 296

putProperty 315

PenReverse 239

Queries 81

queue 62

quoted 55

Quotient 138

radArcCos 150

radArcSin 149

radArcTan 151

radCos 148

radd 168

RadioButton 530

RadioButtonDestroy 531

RadioButtonEnable 532

RadioButtonOnClick 531

RadioButtons 530

RadioButtonSet 532

RadioButtonValue 532

radSin 147

radTan 148

random 165

Random Numbers 165

ratio 167

ratio2float 168

Rational numbers 167

rawASCII 83

readChar 93

readCharExt 94

readChars 95

rdiv 169

readChar 93

readCharExt 94

readChars 95

readComplexBin 96

Reader 109

ReaderPos 110

592
Index

readFloatArrayBin 96

readFloatBin 96

readInt16ArrayBin 96

readInt16Bin 95

readInt8Bin 95

readIntArrayBin 96

readIntBin 95

readList 92

readStructBin 97

readUInt8Bin 96

readWord 93

real 55

Receivers 92

reDefP 395

redraw 230

reduce 383

Reed 583

refresh 229

refreshP 229

reHSB 291

reHSBA 291

Relative Turtle Motion 195

Release Notes 4

Release Notes for Version 4.64 24

Release Notes for Version 4.65 18

Release Notes for Version 4.66 18

Release Notes for Version 4.67 17

Release Notes for Version 4.672 16

Release Notes for Version 4.68 15

Release Notes for Version 4.682 15

Release Notes for Version 4.683 14

Release Notes for Version 4.684 13

Release Notes for Version 4.685 7

Release Notes for Version 4.686 6

Release Notes for Version 4.687 5

Release Notes for Version 4.688 5

Release Notes for Version 4.689 5

Release Notes for Version 4.69 4

Remainder 138

remDup 55

remove 55

removeItem 59

removeProperty 316

removeProperty 316

repeatCount 371

repeat 371

repeatCount 371

replace 47

reRandom 165

reRGB 289

reRGBA 290

reset 352

resize 155

reverse 44

RGB 289

RGBA 289

right 197

rightPortShift 125

rightRoll 198

readList 92

rmul 168

rnd 165

Roll 214

rotate 45

rotatescene 233

round 142

rightRoll 198

rSeq 154

rSeqFloatArray 154

rSeqFloatArray 154

rsub 168

right 197

run 357

runParse 86

runResult 358

readWord 93

saturateAbove 156

saturateBelow 157

save 340

saveImage 282

savel 340

savePicture 275

savePicture 275

savePictureText 275

savePostScript 276

savePostScript 276

saveScreen 276

saveScreenVector 277

saveSize 279

ScreenColor 253

ScreenColor 253

scroll 232

scrollCalibrate 232

scrollCalibrate 232

Scrunch 217

Sentence 36

Selectors 49

Sentence 36

setCallsSplitter 227

setCaseIgnored 334

setCursor 120

setCylinderPos 207

setDepthFunc 243

setEye 222

setFloodColor 240

setFloodColor 240

setFogColor 273

setFogDensity 272

setFogMode 273

setFogRange 272

setHeading 208

setHeading 208

setIdentityMatrix 297

setIdentityMatrix 297

setItem 57

setItems 59

setLabelAlign 226

setLabelFont 225

setLabelSize 224

setLabelWeight 225

setLightAmbient 270

setLightDiffuse 271

setLightPos 270

setLightSpecular 271

setLogoComspec 115

setLogoEditor 116

setLogoHelpDir 116

setLogoLibDir 117

setLogoTempDir 117

593
Index

setMatrix 295

setMargins 121

setMaterialAmbient 241

setMaterialDiffuse 241

setMaterialEmission 241

setMaterialShininess 241

setMaterialSpecular 241

setMatrix 295

setOrientation 209

setPenColor 239

setpen 243

setPenColor 239

setPenPattern 242

setPenSize 242

setPitch 208

setPixel 286

setPixelXY 287

setPixelXYZ 287

setPortBit 124

setPos 204

setPosXYZ 205

setPrintPrecision 171

setPenSize 242

setReader 107

setReaderPos 109

setRoll 209

setSaveSize 279

setScreenColor 242

setScreenColor 242

setScreenRange 233

setScrunch 228

setShadowColor 303

setSpherePos 206

setStackNoisy 345

setTextColor 121

setTessWindingRule 260

setTexPos 299

setTextColor 121

setTextFont 121

setTextSelection 123

setTextSize 122

setTexXY 299

setTurtleMatrix 295

setTurtle 237

setTurtleMatrix 295

setUpdateGraph 230

setVarsSplitter 227

setWriter 108

setWriterPos 110

setX 201

setXY 202

setXYZ 202

setY 201

setZ 201

ShadowColor 304

Shadows 302

Shell 97

ShellSpawn 97

show 90

shownP 234

showTurtle 219

shrinkStacks 345

shuffle 45

Signum 143

Sin 146

singleBuffer 229

SizeOf 82

Slider 534

SliderDestroy 535

SliderEnable 537

SliderOnScroll 537

Sliders 534

SliderSetRange 536

SliderSetValue 536

SliderValue 536

Sound 564

Sound programming 561

Soundeffects 585

Sounds 564

SoundsFinished 565

SoundsStop 565

SpaceP 79

Special Variables 394

Sphere 267

spinX 210

spinY 210

spinZ 210

splitScreen 227

Sqr 144

Sqrt 144

splitScreen 227

showTurtle 219

Standard Dialogs 413

standout 85

Startup 395

StaticText 539

StaticTextDestroy 540

StaticTextLabel 540

StaticTexts 539

StaticTextSetBackgroundColor 541

StaticTextSetColor 541

StaticTextSetFontName 542

StaticTextSetFontSize 541

StaticTextSetFontStyle 542

StaticTextSetFontWeight 543

StaticTextSetLabel 540

step 338

stepall 339

stop 354

StringBuffer 35

StringBufferToWord 35

Strings 582

Struct 42

subStringP 69

Sum 135

SurfaceColumn 262

SurfaceEnd 263

Synth-Effects 584

Synth-Lead 583

Synth-Pad 584

Table 41

Tag 355

Tan 148

Template Based Iteration 376

Terminal Access 119

TessContour 260

TessEnd 260

TessStart 259

test 366

594
Index

Text 309

TextControl 544

TextControlAppend 548

TextControlCursor 548

TextControlDestroy 546

TextControlEnable 554

TextControlInsertMode 549

TextControlOnChange 554

TextControlOnChar 552

TextControlOnEnter 554

TextControlOnKeyDown 553

TextControlOnKeyUp 553

TextControlOverwriteMode 550

TextControls 544

TextControlSetBackgroundColor 550

TextControlSetColor 550

TextControlSetCursor 549

TextControlSetFontName 551

TextControlSetFontSize 551

TextControlSetFontStyle 552

TextControlSetFontWeight 552

TextControlSetInsertionPointEnd 548

TextControlSetValue 547

TextControlValue 547

TextControlWrite 547

TextMousePos 234

TextMouseX 235

TextMouseY 235

TextScreen 226

Texture 298

Texturing 298

Thing 314

throw 367

Time 128

TimeFine 127

TimeMilli 127

TimerFreq 128

TimeU 127

TimeURes 127

Timing 127

TurtleMatrix 295

to 306

ToggleButton 556

ToggleButtonDestroy 557

ToggleButtonEnable 558

ToggleButtonOnClick 557

ToggleButtons 556

ToggleButtonSetValue 558

ToggleButtonValue 557

Tokenization 29

toList 43

toListList 46

Tone 562

Tones 562

TonesFinished 563

TonesStop 563

towards 215

towardsXYZ 215

trace 337

traceall 338

traced 322

transfer 385

Transmitters 89

transposematrix 158

transposematrix 158

truncate 143

truncate 143

TextScreen 226

Turtle 237

Turtle and Window Control 218

Turtle and Window Queries 234

Turtle Motion Queries 212

TurtleMatrix 295

type 90

TypeOf 82

UInt8 142

UInt8P 72

unbury 336

unburyall 336

unburyname 337

unperspective 222

unstep 339

until 373

untrace 338

upPitch 198

updateCalls 231

updateGraph 230

updateVars 231

updateVarsOnStep 231

upperCase 85

UpperP 79

upPitch 198

Variable Definition 312

VideoEnd 266

VideoFrame 265

VideoStart 265

wait 358

waitMS 359

waituS 359

Wave Sound 566

while 373

Window 221

Window Styles 396

Word 34

WordP 64

WordUnderCursor 120

Workspace Control 334

Workspace Management 305

Workspace Predicates 318

Workspace Queries 321

wrap 220

Writer 109

WriterPos 110

xAdd 160

xCopy 160

xCor 212

xDigitP 80

xDiv 161

xMod 161

xMul 161

xSub 160

yCor 212

zCor 213

	Contents
	Release Notes
	Release Notes for Version 4.69
	Release Notes for Version 4.689
	Release Notes for Version 4.688
	Release Notes for Version 4.687
	Release Notes for Version 4.686
	Release Notes for Version 4.685
	Release Notes for Version 4.684
	Release Notes for Version 4.683
	Release Notes for Version 4.682
	Release Notes for Version 4.68
	Release Notes for Version 4.672
	Release Notes for Version 4.67
	Release Notes for Version 4.66
	Release Notes for Version 4.65
	Buglist for version 4.65
	Release Notes for Version 4.64
	Berkeley Logo User Manual

	Entering and leaving Logo
	Tokenization
	Data Structure Primitives
	Constructors
	Word
	StringBuffer
	StringBufferToWord
	List
	Sentence
	fPut
	lPut
	Array
	IntArray
	Int16Array
	FloatArray
	mdarray
	Table
	Struct
	toList
	combine
	reverse
	rotate
	shuffle
	merge
	mergePairs
	toListList
	mergeSort
	genSym
	replace
	deepCopy

	Selectors
	first
	firsts
	last
	butFirst
	butFirsts
	butLast
	Item
	mdItem
	BitItem
	pick
	items
	remove
	remDup
	quoted
	real
	imag
	conjugate

	Mutators
	setItem
	_setItem
	mdSetItem
	setItems
	removeItem
	_setFirst
	_setButFirst
	_setBF
	push
	pop
	queue
	dequeue

	Predicates
	WordP
	ListP
	ArrayP
	emptyP
	equalP
	beforeP
	_eq
	MemberP
	subStringP
	NameInTableP
	NumberP
	CharP
	IntP
	Int16P
	Int8P
	UInt8P
	floatP
	complexP
	backslashedP
	circularP
	AlNumP
	AlphaP
	ASCIIP
	CntrlP
	CSymP
	DigitP
	GraphP
	LowerP
	PrintP
	PunctP
	SpaceP
	UpperP
	xDigitP

	Queries
	count
	SizeOf
	TypeOf
	ASCII
	rawASCII
	Char
	Member
	lowerCase
	upperCase
	standout
	parse
	runParse
	BackslashEncode

	Communication
	Transmitters
	print
	type
	show
	dir
	dirlg
	displaymatrix

	Receivers
	readList
	readWord
	readChar
	readCharExt
	readChars
	readIntBin
	readInt16Bin
	readInt8Bin
	readUInt8Bin
	readFloatBin
	readComplexBin
	readIntArrayBin
	readInt16ArrayBin
	readFloatArrayBin
	readStructBin
	Shell
	ShellSpawn
	LogoVersion
	OSScreenSize

	FileAccess
	openRead
	openReadBin
	openWrite
	openWriteBin
	openAppend
	openAppendBin
	openUpdate
	openUpdateBin
	close
	allOpen
	closeall
	eraseFile
	dribble
	noDribble
	setReader
	setWriter
	Reader
	Writer
	setReaderPos
	setWriterPos
	ReaderPos
	WriterPos
	EofP
	FileSize
	FileTime
	FileP
	DirectoryP
	getWorkingDirectory
	changeDir
	makeDirectory
	Files
	loadpalette

	Environment
	LogoComspec
	setLogoComspec
	LogoEditor
	setLogoEditor
	LogoHelpDir
	setLogoHelpDir
	LogoLibDir
	setLogoLibDir
	LogoTempDir
	setLogoTempDir

	Terminal Access
	KeyP
	clearText
	setCursor
	Cursor
	CharUnderCursor
	WordUnderCursor
	setMargins
	setTextColor
	setTextFont
	setTextSize
	boldTextMode
	plainTextMode
	insertMode
	overwriteMode
	setTextSelection
	enableTextMouseEvents
	disableTextMouseEvents

	Port Input and Output
	PortOut
	PortIn
	setPortBit
	clearPortBit
	getPortBit
	notPortBit
	leftPortShift
	rightPortShift

	Timing
	TimeFine
	TimeMilli
	TimeU
	TimeURes
	TimerFreq
	Time
	MIPS

	Dynamic Libraries
	DynamicLibrary
	DynamicLibraryCall

	Arithmetic
	Numeric Operations
	Sum
	Difference
	Minus
	Product
	Quotient
	Remainder
	Modulo
	Float
	BigFloat
	BigFloatSetPrecision
	Int
	Int16
	Int8
	UInt8
	round
	truncate
	abs
	Signum
	Sqr
	Sqrt
	Power
	exp
	Log10
	LN
	Sin
	radSin
	Cos
	radCos
	Tan
	radTan
	ArcSin
	radArcSin
	ArcCos
	radArcCos
	ArcTan
	radArcTan
	Faculty
	factorize
	min
	max
	Norm
	maxNorm
	iSeq
	rSeq
	rSeqFloatArray
	gcd
	lcm
	resize
	lowPassFilter
	saturateAbove
	saturateBelow
	cross
	invertMatrix
	transposematrix
	MandelIterate

	Arithmetic Mutators
	xCopy
	xAdd
	xSub
	xMul
	xDiv
	xMod

	Arithmetic Predicates
	lessP
	greaterP
	lessEqualP
	greaterEqualP
	primeP

	Random Numbers
	random
	reRandom
	rnd

	Rational numbers
	ratio
	float2ratio
	ratio2float
	radd
	rsub
	rmul
	rdiv

	Print formatting
	Form
	intForm
	setPrintPrecision
	hex

	Bitwise Operations
	BitAnd
	BitOr
	BitXOr
	BitNot
	aShift
	lShift

	Logical Operations
	and
	or
	and2
	or2
	not

	Graphics
	Color database
	Relative Turtle Motion
	forward
	back
	left
	right
	leftRoll
	rightRoll
	upPitch
	downPitch

	Absolute Turtle Motion
	Home
	setX
	setY
	setZ
	setXY
	setXYZ
	setPos
	_setPos
	setPosXYZ
	_setPosXYZ
	setSpherePos
	setCylinderPos
	setHeading
	setPitch
	setRoll
	setOrientation
	spinX
	spinY
	spinZ

	Turtle Motion Queries
	xCor
	yCor
	zCor
	Pos
	PosXYZ
	Heading
	Pitch
	Roll
	Orientation
	towards
	towardsXYZ
	Distance
	DistanceXYZ
	Pixel
	Scrunch

	Turtle and Window Control
	showTurtle
	hideTurtle
	clean
	clearScreen
	wrap
	Window
	Fence
	perspective
	unperspective
	setEye
	fill
	Label
	LabelSize
	setLabelSize
	LabelFont
	setLabelFont
	LabelWeight
	setLabelWeight
	LabelAlign
	setLabelAlign
	TextScreen
	fullScreen
	splitScreen
	setVarsSplitter
	setCallsSplitter
	allFullScreen
	notFullScreen
	setScrunch
	refresh
	noRefresh
	singleBuffer
	doubleBuffer
	refreshP
	redraw
	setUpdateGraph
	updateGraph
	updateVars
	updateVarsOnStep
	Calls
	updateCalls
	dispatchMessages
	scroll
	scrollCalibrate
	axes
	rotatescene
	setScreenRange

	Turtle and Window Queries
	shownP
	MousePos
	TextMousePos
	TextMouseX
	TextMouseY
	MouseButtons

	Multiple Turtles
	Turtle
	newTurtle
	setTurtle

	Pen and Background Control
	PenDown
	PenUp
	PenPaint
	PenErase
	PenReverse
	setPenColor
	setFloodColor
	setMaterialAmbient
	setMaterialDiffuse
	setMaterialSpecular
	setMaterialEmission
	setMaterialShininess
	setScreenColor
	setPenSize
	setPenPattern
	setpen
	setDepthFunc

	enable and disable flags
	enableLineSmooth
	disableLineSmooth
	enablePolySmooth
	disablePolySmooth
	enableRoundLineEnds
	disableRoundLineEnds
	enableCylinderLines
	disableCylinderLines
	enableDepthTest
	disableDepthTest
	enableLighting
	disableLighting
	enableDither
	disableDither
	enablePointSmooth
	disablePointSmooth
	enableFog
	disableFog

	Pen Queries
	PenDownP
	PenMode
	PenColor
	FloodColor
	Palette
	PenSize
	pen
	ScreenColor

	Drawing Curves
	circle
	EllipseArc
	Ellipse
	Arc
	arc2
	cngon

	Drawing filled shapes
	PolyStart
	PolyEnd
	TessStart
	TessContour
	TessEnd
	setTessWindingRule
	endSurfaceStart
	SurfaceColumn
	SurfaceEnd
	GraphicStart
	GraphicEnd
	drawGraphic
	VideoStart
	VideoFrame
	VideoEnd
	fillRect
	fillCircle
	fillEllipse
	fillPie
	Sphere
	Ellipsoid
	partialEllipsoid

	Lighting
	setLightPos
	setLightAmbient
	setLightDiffuse
	setLightSpecular

	Fog
	setFogDensity
	setFogRange
	setFogColor
	setFogMode

	Pictures
	savePicture
	loadPicture
	savePictureText
	loadPictureText
	savePostScript
	saveScreen
	saveScreenVector
	saveSize
	setSaveSize

	Bitmaps
	BitCopy
	BitPaste
	loadImage
	saveImage
	BitMakeTransparent
	BitSetPixel
	BitPixel
	BitMaxX
	BitMaxY

	Direct Graphics
	setPixel
	setPixelXY
	setPixelXYZ
	Line
	RGB
	RGBA
	reRGB
	reRGBA
	HSB
	HSBA
	reHSB
	reHSBA
	addColors
	addColorsMod
	getColorDatabase

	Projection Matrix
	Matrix
	setMatrix
	TurtleMatrix
	setTurtleMatrix
	pushMatrix
	popMatrix
	IdentityMatrix
	setIdentityMatrix

	Texturing
	Texture
	setTexXY
	setTexPos
	enableTexture
	disableTexture
	deleteTextures

	Shadows
	enableShadows
	disableShadows
	castShadows
	clearShadows
	setShadowColor
	ShadowColor

	Workspace Management
	Procedure Definition
	to
	define
	Text
	fullText
	copyDef

	Variable Definition
	make
	name
	local
	localmake
	Thing

	Property Lists
	putProperty
	getProperty
	removeProperty
	PropertyList

	Workspace Predicates
	ProcedureP
	PrimitiveP
	definedP
	NameP
	CaseIgnoredP

	Workspace Queries
	Contents
	buried
	traced
	Primitives
	Procedures
	Names
	PropertyLists
	namelist
	pllist
	Arity
	Nodes

	Inspection
	printOut
	poall
	pops
	pons
	popls
	pon
	popl
	printOutTitles
	pots

	Workspace Control
	setCaseIgnored
	bury
	buryall
	buryname
	unbury
	unburyall
	unburyname
	trace
	traceall
	untrace
	step
	stepall
	unstep
	save
	savel
	load
	help
	h
	GC
	shrinkStacks
	setStackNoisy

	Editing
	edit
	editFile
	edall
	edps
	edns
	edpls
	edn
	edpl

	Erasing
	erase
	eraseAll
	eraseProcedures
	eraseNames
	erasePropertyLists
	ern
	erpl
	reset

	Control Structures
	bye
	stop
	goTo
	Tag
	output
	ignore
	`
	run
	runResult
	wait
	waitMS
	waituS
	pause
	continue
	check
	profile

	Conditional execution
	if
	ifElse
	ifTrue
	ifFalse
	test
	case
	cond
	throw
	catch
	error
	_maybeOutput

	Loops
	repeat
	repeatCount
	forever
	for
	while
	until
	do_while
	do_until
	break
	continueLoop

	Template Based Iteration
	apply
	invoke
	foreach
	map
	map_se
	filter
	find
	reduce
	crossmap
	cascade
	cascade2
	transfer

	Macros
	_Macro
	_defMacro
	MacroP
	macroexpand

	Error Processing
	Special Variables
	erract
	loadNoisily
	printDepthLimit
	printWidthLimit
	reDefP
	Startup

	GUI programming
	Window Styles
	Custom Event Handlers
	OnChar
	OnKeyDown
	OnKeyUp
	KeyboardValue
	OnTextMouseLeftDown
	OnTextMouseRightDown
	OnTextMouseMiddleDown
	OnTextMouseLeftUp
	OnTextMouseRightUp
	OnTextMouseMiddleUp
	OnTextMouseLeftDClick
	OnTextMouseRightDClick
	OnTextMouseMiddleDClick
	OnTextMouseMotion
	OnMouseLeftDown
	OnMouseRightDown
	OnMouseMiddleDown
	OnMouseLeftUp
	OnMouseRightUp
	OnMouseMiddleUp
	OnMouseLeftDClick
	OnMouseRightDClick
	OnMouseMiddleDClick
	OnMouseMotion

	Standard Dialogs
	DirSelector
	FileSelector
	getColorFromUser
	getFontFromUser
	getMultipleChoices
	getNumberFromUser
	getPasswordFromUser
	getTextFromUser
	getSingleChoice
	getSingleChoiceIndex
	MessageBox

	Frames
	Frame
	FrameDestroy
	FrameOnChar
	FrameOnKeyDown
	FrameOnKeyUp
	FrameSetFocus
	FrameEnable
	FrameMaximize
	FrameIconize
	FrameFullScreen
	FrameSetClientSize
	FrameSetColor
	FrameSetBackgroundColor
	FrameSetFontSize
	FrameSetFontName
	FrameSetFontStyle
	FrameSetFontWeight
	FrameSetShape
	FrameSetSizer

	Graphs
	Graph
	GraphDestroy
	GraphCurrent
	GraphSetCurrent
	GraphOnChar
	GraphOnKeyDown
	GraphOnKeyUp
	GraphOnMouseLeftDown
	GraphOnMouseRightDown
	GraphOnMouseMiddleDown
	GraphOnMouseLeftUp
	GraphOnMouseRightUp
	GraphOnMouseMiddleUp
	GraphOnMouseLeftDClick
	GraphOnMouseRightDClick
	GraphOnMouseMiddleDClick
	GraphOnMouseMotion

	BoxSizers
	BoxSizer
	BoxSizerAdd
	BoxSizerDestroy

	Buttons
	Button
	ButtonDestroy
	ButtonOnClick
	ButtonEnable

	CheckBoxes
	CheckBox
	CheckBoxDestroy
	CheckBoxOnClick
	CheckBoxValue
	CheckBoxSet
	CheckBoxEnable

	ChoiceBoxes
	ChoiceBox
	ChoiceBoxDestroy
	ChoiceBoxSelection
	ChoiceBoxSetSelection
	ChoiceBoxSetChoices
	ChoiceBoxAppend
	ChoiceBoxSetItem
	ChoiceBoxRemoveItem
	ChoiceBoxCount
	ChoiceBoxSetBackgroundColor
	ChoiceBoxSetColor
	ChoiceBoxSetFontSize
	ChoiceBoxSetFontName
	ChoiceBoxSetFontStyle
	ChoiceBoxSetFontWeight
	ChoiceBoxOnChar
	ChoiceBoxOnKeyDown
	ChoiceBoxOnKeyUp
	ChoiceBoxOnSelect
	ChoiceBoxEnable

	ComboBoxes
	ComboBox
	ComboBoxDestroy
	ComboBoxSelection
	ComboBoxSetSelection
	ComboBoxSetChoices
	ComboBoxAppend
	ComboBoxSetItem
	ComboBoxRemoveItem
	ComboBoxCount
	ComboBoxValue
	ComboBoxSetValue
	ComboBoxSetBackgroundColor
	ComboBoxSetColor
	ComboBoxSetFontSize
	ComboBoxSetFontName
	ComboBoxSetFontStyle
	ComboBoxSetFontWeight
	ComboBoxOnChar
	ComboBoxOnKeyDown
	ComboBoxOnKeyUp
	ComboBoxOnSelect
	ComboBoxOnChange
	ComboBoxOnEnter
	ComboBoxEnable

	FloatControls
	FloatControl
	FloatControlDestroy
	FloatControlValue
	FloatControlSetValue
	FloatControlSetRange
	FloatControlOnChange
	FloatControlEnable

	Gauges
	Gauge
	GaugeDestroy
	GaugeValue
	GaugeSetValue
	GaugeSetRange
	GaugeSetColor
	GaugeSetBackgroundColor

	IntControls
	IntControl
	IntControlDestroy
	IntControlValue
	IntControlSetValue
	IntControlSetRange
	IntControlOnChange
	IntControlEnable

	ListBoxes
	ListBox
	ListBoxDestroy
	ListBoxSelections
	ListBoxSetSelections
	ListBoxSetChoices
	ListBoxAppend
	ListBoxSetItem
	ListBoxRemoveItem
	ListBoxCount
	ListBoxSetBackgroundColor
	ListBoxSetColor
	ListBoxSetFontSize
	ListBoxSetFontName
	ListBoxSetFontStyle
	ListBoxSetFontWeight
	ListBoxOnChar
	ListBoxOnKeyDown
	ListBoxOnKeyUp
	ListBoxOnSelect
	ListBoxOnDClick
	ListBoxEnable

	ListControls
	ListControl
	ListControlDestroy
	ListControlInsertColumn
	ListControlInsertItem
	ListControlSetItem
	ListControlGetItem
	ListControlDeleteItem
	ListControlSetRow
	ListControlSetColumn
	ListControlSet
	ListControlGetRow
	ListControlGetColumn
	ListControlGet
	ListControlItemCount
	ListControlColumnCount
	ListControlColumn
	ListControlRow
	ListControlText
	ListControlSort
	ListControlSetBackgroundColor
	ListControlSetColor
	ListControlSetFontSize
	ListControlSetFontName
	ListControlSetFontStyle
	ListControlSetFontWeight
	ListControlOnChar
	ListControlOnKeyDown
	ListControlOnKeyUp
	ListControlOnItemSelected
	ListControlOnItemActivated
	ListControlOnColClick
	ListControlEnable

	RadioButtons
	RadioButton
	RadioButtonDestroy
	RadioButtonOnClick
	RadioButtonValue
	RadioButtonSet
	RadioButtonEnable

	Sliders
	Slider
	SliderDestroy
	SliderValue
	SliderSetValue
	SliderSetRange
	SliderOnScroll
	SliderEnable

	StaticTexts
	StaticText
	StaticTextDestroy
	StaticTextLabel
	StaticTextSetLabel
	StaticTextSetColor
	StaticTextSetBackgroundColor
	StaticTextSetFontSize
	StaticTextSetFontName
	StaticTextSetFontStyle
	StaticTextSetFontWeight

	TextControls
	TextControl
	TextControlDestroy
	TextControlValue
	TextControlSetValue
	TextControlWrite
	TextControlAppend
	TextControlSetInsertionPointEnd
	TextControlCursor
	TextControlSetCursor
	TextControlInsertMode
	TextControlOverwriteMode
	TextControlSetColor
	TextControlSetBackgroundColor
	TextControlSetFontSize
	TextControlSetFontName
	TextControlSetFontStyle
	TextControlSetFontWeight
	TextControlOnChar
	TextControlOnKeyDown
	TextControlOnKeyUp
	TextControlOnChange
	TextControlOnEnter
	TextControlEnable

	ToggleButtons
	ToggleButton
	ToggleButtonDestroy
	ToggleButtonOnClick
	ToggleButtonValue
	ToggleButtonSetValue
	ToggleButtonEnable

	Miscellaneous GUI elements
	beginBusyCursor
	endBusyCursor
	ConsoleSetFocus

	Sound programming
	PC speaker
	Tone
	Tones
	TonesStop
	TonesFinished
	Sound
	Sounds
	SoundsStop
	SoundsFinished

	Wave Sound
	playWave
	playWaveFast

	Midi
	MidiCountDevices
	MidiDeviceInfo
	MidiOpen
	MidiClose
	MidiMessage
	MidiProgramChange
	MidiNoteOn
	MidiNoteOff
	MidiAllSoundsOff
	MidiOutStream
	MidiOutStreamsStart
	MidiOutStreamsStop
	MidiOutStreamsFinished

	Midi Table
	Midi Control Table
	Midi Glossary
	Midi Instruments
	Pianos
	Chromatic
	Organs
	Guitars
	Basses
	Strings
	Ensembles
	Brass
	Reed
	Pipes
	Synth-Lead
	Synth-Pad
	Synth-Effects
	Ethnic
	Percussive
	Soundeffects

	Index

